
Software development methods:

SOA vs. CBD, OO and AOP

Mika Koskela, Mikko Rahikainen, and Tao Wan

Helsinki University of Technology
mkoskel@cc.hut.fi,mikko.rahikainen@iki.fi,simonwantao@yahoo.com

Abstract. Before the emergence of Service-Oriented Architecture (SOA),
similar issues have been addressed by other software development paradigms
including e.g. Object-Oriented Programming (OOP), Aspect-Oriented
Programming (AOP) and Component-Based Development (CBD). In
this study, these approaches are compared to SOA and their relation-
ship is discussed. Different kind of criteria is used: methods of enabling
software reuse, impacts on enterprise applications, architectural patterns
and support for application extensions and versioning. It is concluded
that many of the mechanisms provided by SOA can be enabled by soft-
ware elements at the lower level. The main contribution of SOA is the
focus on high-level business logic. SOA, CBD and OOP can be built
on each other in layered manner with possible adoption of AOP having
its effects on each level. Still, some things such as version control pose
problems for each of the approaches.

Key words: Service-Oriented Architecture, Object-Oriented Program-
ming, Component-Based Development, Aspect-Oriented Programming,
SOA, OOP, CBD, AOP

1 Introduction

Service Orientation is currently one of the most appraised paradigms in software
engineering and enterprise IT. However, many of its claimed benefits have been
addressed by previous approaches in software development. Additionally, soft-
ware systems are not built using services as the only element of construction but
lower level artifacts are also required. These can be represented by components
or objects, for example. In this report, the Service-Oriented Architecture and
Computing (SOA / SOC) approach is compared to other software development
paradigms. The domain of investigation is software development and this is the
perspective that is taken on SOA here. In the comparison, the main emphasis is
on Component-Based Development (CBD) and Object-Oriented Programming
(OOP) approaches but also Aspect-Oriented Programming (AOP) is discussed.
The objective is to address the main aims and benefits of these approaches. These
are then compared to the characteristics of the Service-Oriented approach and
differences and similarities in both means and ends are pointed out. Additionally,
the relationship between these paradigms is described and their fitting together
briefly explained.



2 Software development methods: SOA vs. CBD, OO and AOP

This report is solely based on a literature study. In the study, the emphasis
was on rudimentary literature discussing the approaches. This means that re-
views on products and specific technologies as well as detailed implementation
case studies were left out of the scope of the research. However, the aim was also
to assess how well the paradigms have been currently realized. In the comparison
of the approaches, specific frameworks of criteria are used.

The report is structured as follows: first section 2, each focal paradigm is
briefly introduced and the approach of software reuse discussed. Next, in section
3, the approaches are compared with one another. There are three angles to
this: level of abstraction, reuse, implementation, logical layering and support for
application extension. Finally, in section 4, the findings of these comparisons are
discussed and the conclusions are made.

2 Background

2.1 Service-Oriented Computing and Architecture

Papazoglou and Georgakopoulos [14] define Service-Oriented Computing (SOC)
as a paradigm that utilizes services as fundamental elements of distributed ap-
plication development. Accordingly, services are self-describing, open software
components that communicate with each other over the Internet via public in-
terfaces. Service-Oriented Architecture can be seen as an architectural concept
based on SOC. Erl [3] recognizes the following characteristics for SOAs:

– Loose Coupling : minimum amount of interdependencies between services
– Service Contract : the interaction between services is based on a communi-

cation and document agreement
– Autonomy : services control the logic they encapsulate.
– Abstraction: services hide their internal logic from the external environment

except those parts that are described in the service contract.
– Reusability : dividing logic to services promotes reuse.
– Composability : services can be assembled from other services
– Statelessness: minimum amount of activity specific information is stored.
– Discoverability : the existence of discovery mechanisms so that services can

be discovered by their users

2.2 Object Oriented Programming and Development

Object oriented programming traces back to Simula language of 60s which was
developed for describing and programming simulations.[17, Part III] Late 80s and
90s can be seen as a time frame when OOP moved to mainstream application
development. Since then most influential OO-languages in industry have been
C++ and Java. As a result of research and development in OO many tools
and technologies have been introduced to support OO-based development as
modeling languages, application servers, OO-databased or relational mapping
tools and OO-based development processes.



Software development methods: SOA vs. CBD, OO and AOP 3

In object oriented languages the execution flow of programs is passing mes-
sages between objects which represents concepts of the problem domain. Each
object encapsulates related data or state of the object and operations in one unit,
compared to functional programming where data is usually passed as a parame-
ter to a function. This encapsulation of data allows code reuse and transparent
change of implementation. Grouping objects to classes and allowing subclasses
to inherit both interfaces and implementation from their parent classes allows
on the other hand building on existing code.

Mapping persistent state of objects to relational database has been one major
technical problem in OOP. Handling persistent objects and transactions is not
a simple task and development wise it is usually better to use existing solutions
- applications servers from both OSS and software vendors have been made to
allow developers of business applications to concentrate more on business logic.
Also there is OO-middleware for distributed development like CORBA ORB-
implementations and, JRMI and other messaging solutions that allow remote
methods calls between objects on different nodes.

Object oriented modeling is usually the first step in object oriented devel-
opment model. From high level conceptual model of problem domain and use
cases, the design phase continues eventually to lower level implementation view
of classes and objects. Modeling of these aspects is usually carried out in stan-
dard modeling language such as UML. Direction have been towards model driven
architecture, MDA, where actual program code can be compiled from modeling
effort[12].

Key promises of OO-based development can be listed as increased code reuse,
easier building on existing code, better change tolerance and decrease in errors
by data hiding and encapsulation and finally OO can be seen as natural way to
model the problem domain.

2.3 Component Based Development

A software component has been described as ”a nontrivial, nearly independent
and replaceable part of a system that fulfills a clear function in the context of a
well-defined architecture” by Brown and Wallnau. It is able to inter-communicate
with other existing components with a predefined service. Clemens Szyperski
and David Messerschmitt present the following five principles that a software
component should have:

– Multiple-use
– Non-context-specific
– Composable with other components
– Encapsulated
– A unit of independent deployment and versioning [23]

Unlike objects in the Object Oriented Programming (OOP), a component
is an ”OOP objects composed”, an object made to a specification. It does not
concern what the specification is, such as, COM (Component Object Model),



4 Software development methods: SOA vs. CBD, OO and AOP

DCOM (Distributed COM, JavaBeans and etc., as long as the object clings to
the specification. This enables a component to obtain features like reusability,
reuse quality and so on. In practice, components are built on top of many software
”objects” (although they are not confined to OOP) and provide a coherent unit
of functionality. ”All ”objects” work together to performance a specific task at
a particular level of service. ” [18]

The idea of software componentized, built from prefabricated components,
was first introduced in Dougalas McIlroy’s address at the NATO conference on
software engineering in Garmisch, Germany 1968 titled Mass Produced Software
Components. The modern concept of a software component was wildly defined
by Brad Cox of Stepstone, who called then Software ICs and created an infras-
tructure in order to market for these components by inventing the Objective-C
programming language. [23]

After mentioning what the software component is, we are going to investigate
CBDE(Component Based Software Engineering) and CBD (Component Based
Development). As well know, when you purchase some PC components from any
market vendors to set up a computer, it is very easy to assembly. You do not need
to build PC system from hundreds of discrete parts, because each component has
been designed to compatible each other and standardized. CBSE also does the
same thing in order to design and construct systems by using reusable software
components.

”Making applications from software components had been a dream in soft-
ware engineering community since its very early time. Programmers have re-
lied on the reuse of code and data structures from as far back as 1968, when
M.D.McILROY published a paper titled ”Mass-Produced Software Components”.”
[18]

The purpose of CBSE is to improve QoS, productivity and time-to-market
in software development. It encourages the compositions of software system and
focus on reusing and adapting existing components.[18]

There are three stages should be done in Components Based Development.

1. Component qualification. It is identified by characteristics (performance, re-
liability and usability) in their interfaces , and also checks reusable compo-
nents.

2. Component adaption is needed. Because components will very less integrate
with the system immediately.

3. Component composition, which integrates the components into a working
system.

Components might change to be updated based on the requirements of system
changes. In order to make sure updates to the components adhere to the system
architecture being developed. Summarily, they must be qualified and adapted if
reusable components are available for potential integration. They also must be
engineered if new components are added. [18]



Software development methods: SOA vs. CBD, OO and AOP 5

2.4 Aspect Oriented Programming

According to Kiczales et al. [10], traditional modularity approach cannot be
applied in the construction of complex software systems. This is because they
include aspects which cut across both one another and the actual executable
code. These aspects include for example distribution and failure handling. The
cross-cutting of aspects means that the software modules eventually become
tangled with aspects. This is considered one of the main sources of complexity
in software systems. Aspect-Oriented Programming (AOP) is a programming
paradigm which deals directly with aspects of concern rather than modules of
software code. The purpose of AOP is to remove the tangling by making it
possible to express aspects of concern and then to combine those aspects with
one another and executable code using automating tools.

Also in AOP abstraction and decomposition are used to break down complex
problem. However, instead of functional decomposition, AOP is based aspectual
decomposition. This means that in Aspect-Oriented programming, the software
artifacts do not remain contiguous in the executable program. Instead, the code
resides in separate aspect descriptions which are spread over the actual exe-
cutable program. [10]

This enables decoupling the aspect-oriented code and other functionality.
Therefore, the details of the aspects can be modified without having to modify
all software code that the aspects affect. The modularization of the concerns is
realized in AOP languages trough the following basic elements [2]:

– Join point model which specifies the points in the code that the aspect
enhancements are added in

– means of identifying join points
– means of specifying join point behavior
– methods for combining aspects and their specifications
– methods for attaching aspects to the program

Aspect orientation has also been applied to software development stages pre-
ceding programming, thus developing a Aspect-Oriented Software Development

(AOSD) and Aspect-Oriented Design (AOD) disciplines. It is therefore necessary
to observe software architecture from Aspect-Oriented angle. However, software
architecture and aspect orientation have evolved separately as disciplines which
poses problems in this process. Reasons for this are two-folded: firstly, it is diffi-
cult to handle different aspects in a consistent, similar way in the architecture.
Secondly, the same aspects can require different treatment in different systems.
. In principle, integrating aspect into the software architecture requires defining
the join points of the components and the connections between different aspects
and components at the architectural level. It can be said that with such methods,
the simplicity of the design process is difficult to preserve. [13]

2.5 Reuse Based Development

The NATO Software Engineering Conference in 1968 can be considered as a
starting point for the software engineering view in general [16]. The aim of the



6 Software development methods: SOA vs. CBD, OO and AOP

conference was to tackle the so-called software crisis: there was a need to build
complex software systems in a controlled and cost-effective manner. From the
beginning, the reuse of software components was considered to be one of the main
concerns in software engineering. In short, software reuse means using existing
software artifacts in the construction of a new software system [11]. However,
although the field in general has matured, software reuse has not become a
standard practice. In addition to reusable pieces of code, software reuse includes
reusing e.g. modules, specifications and documentation [5]. All software reuse
techniques can be analyzed based on four different dimensions [11]:

1. Abstraction: it is essential that the reusable artifacts are abstracted so that
the developers can easily determine whether a reusable artifact is feasible
for their needs and how this artifact should be used in a specific context.
Abstraction is the most important aspect of software reuse. The idea is that
software typically consists of several layers of abstraction in which the higher
layers hide the details of the lower layers. In other words, abstraction distin-
guishes specification representation on the higher level from the realization
on the lower level.

2. Selection: artifacts are often categorized to guide the developers when they
search the artifact library. Also the ways of retrieving and exposing artifacts
are essential to any software reuse technique.

3. Specialization: software artifacts are often merged into generic artifacts. To
be able to use them, the developers have to specialize the artifact trough
parameters or other kind of refinement.

4. Integration: software developers construct complete software systems from
reusable artifacts using an integration framework. An example of this kind
of framework is module interconnection language in which functions are ex-
ported from modules that implement them and imported to modules that
use them.

Due to the generic nature of these issues, a multitude of software reuse tech-
niques can be recognized. Krueger et al. (1992) divide software reuse into the
following eight categories:

– High level languages
– Design and code scavenging
– Source code components
– Software schemas
– Application generators
– Very high-level languages
– Transformational systems
– Software architectures

Accordingly, the difficulty in software reuse stems from the complexity of
abstractions. The developers need to be familiar with the abstractions to be able
to use the software artifacts. For example, if a library of mathematical operations
is used, domain knowledge is required. The use of abstract data structures, in
contrast, necessitates understanding of the underlying semantics. [11]



Software development methods: SOA vs. CBD, OO and AOP 7

3 Comparing approaches

3.1 Scope of SOA vs. OO, CBD and AOP

The objectives of the four discussed software development approaches - Service-
Oriented Architecture, Object-Orientation, Component-based Development and
Aspect-Oriented Programming - are similar to some extent. They can all be con-
sidered as ways to promote software reuse and methods for structuring software
systems into artifacts that can be managed separately for each other. However,
these approaches have different scopes and focuses and they can be considered
to operate on different levels of abstraction.

Conceptually, the approaches define different software system characteristics.
By definition, services are software components. Clearly, a good service captures
the basic characteristics of a component. However, the characteristics of SOA
define in more detail the software architecture that these specific components
constitute. For instance, services operate in distributed environment and focus
on document-centric communication. In contrast, component-based development
does not take that much stand on how the components interact with one another
- this depends on the technology that the components are based on. On the other
hand, components can provide the basis for services, i.e. service interfaces and the
structure of exchanges messages is often based on the component specifications.
In turn, components can encapsulate objects. Aspect-orientation, on the other
hand, can be seen as a complementary paradigm affecting the software system on
several levels. Aspects are closely connected to objects and their classes because
they affect directly to the methods at the code level. However, aspects must
be also taken into account when relationships between different components
are defined. Similarly, they affect the composition of services and therefore the
eventual structure of SOA.

Based on the above discussion, a layered organization of the different artifacts
defined by the approaches (figure 1) can be outlined:

It can also be stated that the scope and level of ambition associated with
each of the approaches is different. To truly leverage from SOA, one should aim
at high service reusability at the enterprise level. Components provide similar
benefits but on a smaller scale. Objects, on the other hand, can be adopted for
a single application development project but they can still provide value. An
enterprise-wide OO-architecture is of course also possible and significant, even if
it would not result in the use of components or services. Finally, aspects add value
especially if they are used across the enterprise. However, unlike services, they
concentrate on a specialized, recurrent aspects, not reusable business functions
like services.

3.2 Enterprise application with SOA, OO, CBD and AOP

SOA Software components in a SOA are services based on standard protocols,
which are not just encapsulation of some code of the lower layer of application. A
service is a software asset of distinctive functional meaning that encapsulates a



8 Software development methods: SOA vs. CBD, OO and AOP

Services


Components


Objects


Aspects


Fig. 1. A layered organization of Objects, Components, Services and Aspects

high-level business concept including contract, interfaces, implementation, busi-
ness logic and data. OO and AOP have no corresponding elements for reposi-
tories. Object-Oriented (OO) programming is a programming paradigm which
deals with relationship between objects, and Aspect-Oriented Programming is
also a programming paradigm with deals directly with aspects of concern rather
than modules of software code.

In SOA, Service repository provides facilities to discover services and ac-
quires all information needed to the use of the service, especially if service must
be discovered outside scope of the of enterprise; it also provides additional infor-
mation to service contract like location, availability, QoS, Provider information,
constraints and so on. Moreover, it is necessary to enable long term benefits and
reuse.

Service Bus is used to connect all participants of an SOA. ”In computing,
an enterprise service bus (ESB) provides foundational services for more com-
plex architectures via an event-driven and standards-based messaging engine,
and generally provides an abstraction layer on top of an implementation of an
enterprise messaging system which allows integration architects to exploit the
value of messaging without writing code. ESB does not implement a SOA but
provides the features with which one may be implemented. Although a com-
mon belief, ESB is not necessarily web-services based. Most ESB providers now
build ESBs to incorporate SOA principles and increase their sales, e.g. Business
Process Execution Language (BPEL).” [22]

CBD with COTS Modern enterprise application systems developing process
become more and more large-scaled, uneasily controlled, complex. Also, due to
time-to-market , no developing standard pressure and growing demand of search-



Software development methods: SOA vs. CBD, OO and AOP 9

ing for a cost-effective, efficient and satisfying multiple Quality of service (QoS)
requirement software developing paradigm, enterprise application are developed
by using commercial-off-the-shelf (COTS) components rapidly. Comparison to
the traditional approach in which software systems can only be implemented
from scratch; these COTS components can be developed by different vendor us-
ing different languages and different computer platforms. In CBD, COTS com-
ponents can be checked out from a component repository, and assembled into a
target software system. So that Enterprise applications increasingly developed
using COTS component middleware. Component middleware encapsulates sets
of services in order to provide reusable building blocks that can be used to de-
velop enterprise applications more rapidly and robustly than those built entirely
from scratch.[7] There are many examples of CTOS component middleware like
the Common Object Request Broker Architecture (CORBA), Component Ob-
ject Model (COM), Distributed COM(DCOM), Sun Microsystem’s JavaBeans
and Enterprise JavaBeans (J2EE), and emerging Web Services middleware such
as .Net and ONE, based on XML and Simple Object Access Protocol (SOAP).

Currently, the growing importance of open source enabled services in the
economy and in most areas of business has been widely recognized. It is a very
economy way to do deployment of an SOA that integrates various OSS systems
with CBD in order to reduce the cost and improve the work efficiency.

3.3 Reuse

AOP, OO, CBD and SOA do work at different levels of abstraction (3.1) . AOP
at code level, OO at object level, CBD at component level and SOA at service
level. This means that also reuse techniques are also working on different lev-
els of abstraction. Software reuse can be divided to four different dimensions:
abstraction, selection, integration and specialization (2.5, [11, p. 3]). To anal-
yse differences in reuse techniques, these techniques can be categorized along
dimensions (Table 1: Dimensions of reuse).

As it can be seen, SOA methods for reuse are quite similar to OO and CBD
methods. Service Interfaces are equivalent of class or component interfaces from
reuse perspective as data ownership is equivalent of data hiding and encapsula-
tion.

Discoverability and use of service repositories is basic SOA principles to en-
able reuse. For CBD and OO comparable method can be use of class and com-
ponent libraries, though their use is not as strongly tied to methodology as use
of repositories in SOA. For AOP there is not equivalent selection strategy.

For integrating existing components, SOA has a concept of service compo-
sitions which is facilitated by service bus. Equivalent CBD and OO-methods
are method or function calls and application framework or middleware such as
object request brokers, message passing middleware and application servers. For
AOP the joint point model allows integration of different aspects to complete ap-
plication. Comparing SOA and OO strategies, service composition using service
bus is technically close to RPC calls between objects or components.



10 Software development methods: SOA vs. CBD, OO and AOP

Method / Dimen-
sion

CBD OO AOP SOA

Abstraction Component
Interfaces,
Encapsula-

tion

Classes,
Interfaces,

Data hiding
and

encapsulation

Decoupling of
aspects

Service inter-
face/contract,

Data
ownership

Selection Component
libraries

Class libraries NA Repositories

Integration Function
class, ORBs

etc.

Method calls,
ORBs etc.

Join point
model

Service
composition,

ESB

Specialization NA Inheritance NA Payload
semantics

Table 1. Dimensions of reuse

For specialization SOA principle of payload semantics allows building more
specialized components on existing code by adding new message fields. In object
oriented programming inheritance is the method for creating sub-classes that can
inherit implementation and interfaces from super-classes. These methods are not
equivalent as payload semantics in itself only allows services to be extended but
inheritance mechanism is built for the reuse in mind. Payload semantics could
also be used in CBD or in OO development, but interface semantics and strong
typing is usually used as it is built in for OO-languages. As CBD could be done in
purely procedural language, inheritance has not been included as a reuse method
to the table. The methods for reuse are not mutually exclusive. As SOA and OO
have different levels of abstraction, SOA development can also use OO based
reuse mechanisms if services are programmed using object oriented principles.
AOP can be used on the same project to enable more reuse by separating aspect
specific code from domain specific code if the selected framework and tools have
support for it.

3.4 Layering and architectural patterns

Layering is one key architectural principle in traditional software development.
Martin Fowler[4] suggests three key architectural layers that are used in enter-
prise applications (Table 2). Note: These layers are logical layers in application
and can be distributed differently in normal N-tier architecture between tiers.
For example in case of a thin client, most of the presentation logic could be on
the server and in some cases to have faster response times some of the domain
logic could be implemented on the client.

When compared to N-tier architecture, in SOA services can call each other
without tiered layering approach. But still these three principal layers are rep-
resented in SOA application. Application front end is part of the presentation
layer, domain logic is implemented in services and ESB integrates services. Same



Software development methods: SOA vs. CBD, OO and AOP 11

Layer Responsibilities

Presentation Provision of services, display of
information

Domain Logic that is the real point of the system.

Data Source Communication with databases,
messaging systems, transaction managers,

other packages
Table 2. Three Principal Layers

kind of architectural patterns as used in OO- or CBD-based development can be
used in development of SOA services. According to Michael Stal [19] same pat-
terns that have been found usable in J2EE applications are directly applicable
to SOA. In figure 2 is a collection of J2EE patterns that Stal suggest for SOA
development to minimize client-service communication, decouple clients and ser-
vices from structural issues (such as service discovery) and increase developer
productivity.

Client
 BusinessDelegate


SessionFacade
 BusinessObject


BusinessEntity
 BusinessSession


DataAccessObject


LookupService


1..*


<<accesses>>
<<accesses>>


local

remote API


<<lookup/create>>


local API


<<uses>>


<<accesses>>


Fig. 2. Applying J2EE patterns in SOA-based context

Here Business Delegate shields client from communication details such as
service discovery and message handling, Session Facade implements stateless
and coarse-grained entities (services) and Data Access Object shields services
from database and enterprise information systems.

3.5 Extending application

Regardless of the adopted approach, the developed software artifacts will change
and evolve. Some changes can be made purely on the implementation level with-
out changing the interface behavior of services, objects or components. These
kinds of changes do not necessarily pose problems in the software system because
this does not change the way the element is used externally. Also in case of AOP
the aim is that the content of the aspect can be changed without affecting the
main code. However, if the interface is changed by e.g. adding new operations



12 Software development methods: SOA vs. CBD, OO and AOP

or changing the parameters of the existing services, objects or components, a
mechanism for version management is required. This is because the old version
of the interface needs to be supported as well: no assumptions can be made
about the use context of the software artifact.

The version and evolution management mechanisms of different component-
based technologies are discussed by Stuckenholz (2005). Also Web Services are
included. In short, it can be said that most of the component-based technologies
provide basic mechanisms for distinguishing between different versions of the
component. However, this might also require inflexible approaches such as man-
ual assignment of version numbers. For example CORBA does not include any
kind of support to component evolution. J2EE application servers use alternative
class loaders to support applications using different versions of classes. .Net re-
sources, in turn, packaged in to assembles which include a manually maintained
manifest that covers all the version information related to the application. In
the context of Web Services, rudimentary version management can be adopted
using different namespaces in the Web Service Description Language (WSDL)
files [1]. This way it is possible to run several versions of the same service in order
to support different kinds of clients. Still it has been said that the Web Service
architecture does not currently support versioning because the service provider
cannot convey the changes to the requester (Papazoglou et al. 2006). More so-
phisticated mechanisms such as suitability checks or incompatibility warnings
cannot be found in any of the component-based industry solutions [20]. The
stronger the dependencies between components, the harder it is to manage dif-
ferent versions of them [20]. In other words, for all of the approaches, the version
management problem can be partially avoided by following the core design prin-
ciples they imply.

Applications can also be extended using technology-dependent extensions
that specialize in a specific issue in the application such as security or quality of
service. In case of Web Services, several proposals of such standards have been
made including e.g. WS-Security and WS-Policy. These views have also been
integrated into Extended Service-Oriented Architecture, xSOA [15]. However, it
can be said that the extensions have not been widely adopted yet and the xSOA
vision has not yet been realized. Extensions for component-based approaches
depend on the used technology and their detailed discussion is out of the scope
of this study. For example CORBA specification has been extended for several
purposes. The quality standardization status of these is unclear, however. For
example, CORBAsec has been considered inadequate due to its limited access
right mechanisms [9]. The need for extensions depends on the adequateness of
the original technology. Additionally, the layering of services, components and
objects is meaningful here: for example, several security APIs exist for Java
(objects) and they can be directly used in J2EE components. However, also
the level of abstraction should be taken into account. For instance, only on the
service layer can a composition language standard be considered relevant.



Software development methods: SOA vs. CBD, OO and AOP 13

3.6 More concerns

Interoperability always plays an important key role in the enterprise application
development under different platforms. Let us present the case of Web Service in
order to clarify the importance of interoperability. Based on different developing
approaches of Web Service, the lack of seamless interoperation can be found
in different attempts to provide mappings between Web services abstracts and
abstractions given by different middleware components. [26] So that, we need an
interface design method based on identifying elementary business function and
converting standard message formats (document) into a set of corresponding
service interface in Web services according to SOA.

In order to satisfy the requirements of e-business application in the sense of
interoperability, we can refine the message transformation relied on service inter-
faces design in service bus. Service-centric model provide a superior interoper-
ability solution in comparison to document-centric model. Even though the main
advantage of the document-centric approach is able to interoperate across differ-
ent environments, as documents can be transmitted as message payloads with
using a variety of messaging protocol. [6] But externalizing data structures in the
form of document schemas creates dependencies between partners applications
that make the document-centric approaching inflexible and difficult to evolve
as changes in documentation specifications [6]. In service-centric model, Web
services remove the need to use data interchange as interoperability mechanism
for e-business applications and make service interfaces designed significantly in
order to reduce coupling between applications with improving scalability. Ser-
vice interfaces should clearly articulate the business operations they perform as
well as the required input parameters, possible errors or exceptions, and results.
Service interfaces should be easily understood by business experts who do not
necessarily possess in-depth technical skills. This allows business experts to use
the services productively to compose business processes and applications. [8]

To refine interface design, 1) input parameter should form a minimal set. 2)
Output parameter should also form a minimal set. 3) Output parameter must be
fully functionally dependent on the input parameter set. [6] Those three interface
design rules are to minimize inter-dependencies between applications.

Moreover, as we discussed in some previous sections, the SOA approaching
comes up certain requirements on top of OO and CBD methods. It is not a good
idea and approach to apply directly the existing OO and CBD concepts for the
purpose of modeling the SOA. The OO concept is still mainly implementation-
related for SOA, while CBD methods are mainly focus on finer-grained compo-
nents. According to the business-driven character of SOA, a proper developing
approach is to combine CBD and OO concepts on activities and work flow.[25]

4 Discussion

It can be said that SOA itself it not a technical novelty. Technical SOA principles
like data ownership are basically object oriented principles. As SOA is techni-
cally agnostic, any messaging techniques can be used in communication - in this



14 Software development methods: SOA vs. CBD, OO and AOP

respect SOA services can be seen as normal software components communicating
over message passing middleware. What separates SOA services from common
components is the requirement of business functionality which raises the level of
abstraction.

As stated in chapter 3.1 SOA functions in higher level of abstraction than
other techniques. Still the purpose of abstraction is same as in OO- and CBD-
methods, make domain logic more understandable by raising the abstraction
level. AOP on the other hand does not raise the level of abstraction, but rather
is separating different concerns like security from the domain logic. It could be
said that AOP is more independent from other techniques as its use is not as
tightly tied in as SOA, CBD and OO are. It is easy to imagine a case where AOP
is not part of the project tool set, but not a situation where SOA is implemented
without using OO- or CBD-techniques.

As SOA services can be built on CBD- and OO-principles (see figure 1 and fig-
ure 2), it adds a new layer for reuse. In addition to reuse of software components
and objects also full blown services can be reused via standard communication
over ESB and discoverability offered by repositories. There is some evidence
that SOA really increases reuse possibilities - one case is reported on eWeek
[21], thought they also attribute increased reuse for use of high level languages.

SOA applications by nature are distributed, which means their construction
is hard. XML- and Web Services may make the communication easier, but that
is only one aspect of distributed application. There still are questions about
security, transactions, fault tolerance, change management etc. which are hard
problems. Steve Vinoskis complaint about new technologies only making easy
things easier [24] is quite easy to understand in this perspective. Even if his
article does not handle SOA itself - an SOA application will also have to have
answers to these questions.

5 Future

Compared to the Service-Oriented approach, Object-Oriented and Component-
Based paradigms have a relatively long history behind them. Therefore, solid
methodology for developing Object-Oriented or Component-Based applications
exists. As the SOA paradigm matures, there is a need for such efforts in this con-
text as well. This requires careful consideration of the role of different software
artifacts in the system: one should clearly distinguish between reusability on
different levels, for instance. The MDA approach may provide a feasible frame-
work for dealing with different levels of abstraction in software systems. MDA
is closely related to the Object-Oriented approach but it can also be applied
together with SOA. This clearly represents one future research direction. Fur-
thermore, many non-functional issues such as security or reliability have not
still been completely solved by these paradigms. This means that the support-
ing Web Service specifications need to be further developed and evaluated and
their relationship to Component and Object level defined.



Software development methods: SOA vs. CBD, OO and AOP 15

References

1. Brown, K., Ellis, M.: Best practice for web service versioning - keep your web
services current with wsdl and uddi. Technical report, IBM (2004)

2. Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K., Ossher, H.: Discussing aspects
of aop. Commun. ACM 44(10) (2001) 33–38

3. Erl, T.: Service-Oriented Architecture : Concepts, Technology, and Design. Pren-
tice Hall PTR (August 2005)

4. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley
(2003)

5. Freeman, P.: Reusable software engineering: concepts and research directions. In:
ITT Proceedings o/ the Workshop on Reusability in Programming, pages 129- 137.
(1983)

6. George Feuerlicht, S.M.: Design method for interoperable web services, ACM,
Sydney, NSW (2007)

7. Gokhale, A., Schmidt, D.C., Natarajan, B., Wang, N.: Applying model-integrated
computing to component middleware and enterprise application. Communication
of the ACM (Octorber 2002) 65

8. Hanson, J.: Coarse-grained interfaces enable service composition in soa
url: http://builder.com.com/5100-63865064520.html (accessed 14.05.2007). Web
(August 2003)

9. Hauf, M., Schwarz, J., Polze, A.: Role-based security for configurable distributed
control systems. words 00 (2001) 111

10. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In Akşit, M., Matsuoka, S., eds.: ECOOP
’97 Object-Oriented Programming 11th European. Volume 1241 of Lecture Notes
in Computer Science. Springer-Verlag, New York, NY (June 1997) 220–242

11. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2) (1992) 131–183
12. Meservy, T., Fenstermacher, K.: Transforming software development: an mda road

map. Computer 38(9) (2005) 52–58
13. Navasa, A., Prez, M., Murillo, J., Hernndez, J.: Aspect oriented software architec-

ture: a structural perspective (2002)
14. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing. Commun.

ACM 46(10) (2003) 24–28
15. Papazoglou, M.: Extending the service oriented architecture. Business Integration

Journal (2005)
16. Randell, B.: Software engineering in 1968. In: ICSE ’79: Proceedings of the 4th in-

ternational conference on Software engineering, Piscataway, NJ, USA, IEEE Press
(1979) 1–10

17. Sethi, R.: Programming Languages 2ed. Addison-Wesley (1997)
18. Siddiqui, F.: Component based software engineering, a look at reusable software

components (August 2003)
19. Stal, M.: Using architectural patterns and blueprints for service-oriented architec-

ture. Software, IEEE 23(2) (2006) 54–61
20. Stuckenholz, A.: Component evolution and versioning state of the art. SIGSOFT

Softw. Eng. Notes 30(1) (2005) 7
21. Taft, D.K.: Usi finds soa key to reusability. eWeek 24(1) (January 2007) D1–D4
22. Various: Enterprise service bus

url: http://en.wikipedia.org/wiki/enterprise service bus (accessed 14.05.2007).
Wiki (2007)



16 Software development methods: SOA vs. CBD, OO and AOP

23. Various: Software componentry
url: http://en.wikipedia.org/wiki/software componentry (accessed 14.05.2007).
Wikipedia (2007)

24. Vinoski, S.: The more things change... IEEE Internet Computing 8 (2004) 87–89
25. Zirpins, C., Lamersdorf, W., Piccinelli, G., Finkelstein, A.: Object orientation and

web services. (1 2005) 1–9
26. Zoran Stojanovic, Ajantha Dahanayake, H.S.: Agile modeling and design of service-

oriented component architecture. (June 2003)


