

The 18th European Conference on Artificial Intelligence

Proceedings

Workshop on Configuration Systems
Monday - Tuesday July 21-22, 2008

Patras, Greece

Juha Tiihonen, Alexander Felfernig, Markus Zanker, Tomi Männistö

jti
Typewritten Text
ISBN 978-960-6843-01-3

iii

Contents

Contents / iii

Organization / v

Preface / vii

Technical Session 1: Fundamentals: modeling and constraint based systems

Solving Practical Configuration Problems Using UML / 1
Andreas Falkner, Ingo Feinerer, Gernot Salzer and Gottfried Schenner

Modeling, Representing, and Configuring Restricted Part-Whole Relations / 7
Lothar Hotz

A Generative Constraint Model for Optimizing Software Deployment / 13
Bernhard Peischl and Mihai Nica

A CSP based Distributed Product Configuration System - (extended abstract) / 19
Fernando Eizaguirre, Martin Zangitu, Karmele Intxausti and Josune de Sosa

Technical Session 2: Personalization and Interactivity

Constraint-based personalized bundling of products and services / 23
Markus Zanker, Markus Aschinger and Markus Jessenitschnig

Towards Recommending Configurable Offerings / 29
Juha Tiihonen and Alexander Felfernig

Beyond Valid Domains in Interactive Configuration / 35
Tarik Hadzic and Barry O'Sullivan

Technical Session 3: Process Integration and Long-term management

Towards an association of product configuration with production planning / 41
Michel Aldanondo, Elise Vareilles, Meriem Djefel and Paul Gaborit

Debugging Structure-based Configuration Models / 47
Thorsten Krebs

Featured Presentation

What Makes Product Configuration Viable in a Business? / 53
Albert Haag

iv

v

Workshop Organization

Workshop Co-chairs
Juha Tiihonen (Helsinki University of Technology, Finland)

Alexander Felfernig (University Klagenfurt Austria)
Tomi Männistö (Helsinki University of Technology, Finland)

Markus Zanker (University Klagenfurt, Austria)

Organizing Committee
Claire Bagley (Oracle Corporation, USA)

Thorsten Blecker (HITeC c/o University of Hamburg, DE)
Albert Haag (SAP AG, Germany)

Thorsten Krebs (HITeC c/o University of Hamburg, DE)
Barry O’Sullivan (University College Cork, Ireland)
Markus Stumptner (University of South Australia)

Program Committee
Michel Aldanondo (E. d. Mines d'Albi, France)
Tomas Axling (Tacton System AB, Sweden)

Claire Bagley (Oracle Corporation, USA)
Thorsten Blecker (HITeC c/o University of Hamburg, DE)

Alexander Felfernig (University Klagenfurt, Austria)
Felix Frayman (Felix Frayman Consulting, USA)
Gerhard Friedrich (University Klagenfurt, Austria)

Albert Haag (SAP AG, Germany)
Esther Gelle (ABB Switzerland -Power Generation)

Youssef Hamadi (Microsoft Research, UK)
Dietmar Jannach (Technical University Dortmund, DE)

Ulrich Junker (ILOG S.A., France)
Thorsten Krebs (HITeC c/o University of Hamburg, DE)

Diego Magro (Universita di Torino, Italy)
Tomi Männistö (Helsinki University of Technology, Finland)

Klas Orsvarn (Tacton System AB, Sweden)
Barry O'Sullivan (University College Cork, Ireland)
Frank Piller (RWTH Aachen University, Germany)

Marty Plotkin (Oracle Corporation, USA)
Mihaela Sabin (University of New Hampshire, USA)
Carsten Sinz (University of Tuebingen, Germany)
Markus Stumptner (University of South Australia)

Juha Tiihonen (Helsinki University of Technology, Finland)
Paolo Viappiani (University of Toronto, Canada)
Markus Zanker (University Klagenfurt, Austria)

vi

vii

Preface
Configuration problems are among the most fruitful domains for applying and developing AI
techniques. Powerful knowledge-representation formalisms are necessary to capture the
great variety and complexity of configurable product models. Furthermore, efficient
reasoning methods are required to provide intelligent interactive behavior in configuration
systems, such as solution search, satisfaction of user preferences, personalization,
optimization, diagnosis, etc.

Nowadays, different AI approaches are well-established as central technologies in many
industrial configuration systems. This wide-spread industrial use of AI-based configurators
makes the field more challenging than ever: the complexity of configurable products still
increases, the mass-customization paradigm is extended to fields like service and software
configuration, personalized (web-based) user interaction and user preference elicitation are
of increasing importance, and finally, the integration of configurators into surrounding IT
infrastructures like business information systems or web applications becomes a critical
issue.

The main goal of the workshop is to promote high-quality research in all technical areas
related to configuration. The workshop continues the series of ten successful Configuration
Workshops started at the AAAI’96 Fall Symposium and continued on IJCAI, AAAI, and
ECAI since 1999. As such, the workshop is of interest for researchers working in the various
fields within the wide range of applicable AI technologies (e.g. Constraint Programming,
Description Logics, Non-monotonic Reasoning, Case-Based Reasoning ...). It serves as a
platform for researchers and industrial participants to exchange needs, ideas, benchmarks,
use cases etc. Beside the participation of researchers from a variety of different fields, past
events always attracted significant industrial interest from major configurator vendors like
Oracle, SAP, and Tacton, as well as from end-users like ABB, DaimlerChrysler, HP, and
Siemens.

Workshop invited talks from industry and academia both have 20 years of experience in
configuration. Among technical papers, examples of application domains beyond traditional
products include services in form of travel and software configuration. Examples of
traditional products included classical car and PC examples, cameras, cranes, elevators,
and railway interlocking systems. Personalized recommendation of configurable products
or services seems to be emerging and is discussed in two papers. Additional ways of
supporting users with richer interaction are presented. Problem solving methods applied in
workshop papers include linear inequalities in addition to CSP in traditional, generative, and
distributed variants. Other topics include fundamentals of configuration modeling, applying
UML for configuration modeling, integrating configuration with production planning, and
supporting long-term management with debugging facilities.

The configuration community thrives. Extended versions of this year’s best papers are to be
published in International Journal of Mass-Customization. In addition, AI EDAM has
allocated Spring 2011 issue for a special issue on Configuration. The idea is to form the
main body of the special issue from extended versions of best papers from 2009 and 2010
workshops. We hope to attract high-quality submissions to next workshops and the special
issue.

Juha Tiihonen, Alexander Felfernig, Tomi Männistö, Markus Zanker

viii

Solving Practical Configuration Problems Using UML
Andreas Falkner1 and Ingo Feinerer2 and Gernot Salzer2 and Gottfried Schenner1

Abstract. In the past we have successfully specified configurations
of complex systems in the railway domain using fragments of the
Unified Modelling Language (UML). Java programs derived from
such specifications check constraints and properties of those config-
urations in a semi-declarative manner.

The aim of this paper is to handle constraints completely declar-
atively and to use the reasoning component as a black box, avoid-
ing the procedural aspects of Java. We describe the UML elements
required for selected practical configuration problems and translate
them to inequalities over integers. This approach not only provides a
precise semantics but also allows us to perform reasoning tasks (like
finding inconsistencies) efficiently. Finally we point out some open
problems.

1 INTRODUCTION

Product configuration is the process of creating an individual product
based on a description of possible parts and assemblies in a knowl-
edge base or product model. Configuring large-scale systems like
railway control systems poses several challenges [11]: They con-
sist of thousands of components and have to satisfy numerous con-
straints and optimisation criteria. Moreover, such systems are long-
lived; configurations have to be maintained and modified over sev-
eral decades. To be able to handle big configurations automatically
it is necessary to employ formal methods, which may lead to the so-
called knowledge acquisition bottleneck: The development and main-
tenance of the database requires knowledge engineers which are fa-
miliar with the formal representation language and the domain.

Using the Unified Modelling Language (UML) for specifying con-
figurations is one particular attempt to tackle this challenge; see
e.g. [16]. UML’s graphical notations are well-known and widely used
in software engineering. Therefore one may expect that the barrier of
using them is lower than e.g. for logic-oriented knowledge repre-
sentation languages, which are complex and familiar to only a few
people. Moreover, many tools exist for composing and manipulat-
ing UML specifications. Besides, the diagrams can hold additional
information about the components such that program code for tasks
beyond configuration can be generated from the same specification.

Early in the development of object-oriented modelling it has been
already noted that “most object-oriented methods only provide a
loose interpretation of the meaning of the diagrams they use. This can
lead to problems of: misinterpretation (confusion and disagreement
over the precise meaning of a model); analysis (important proper-
ties of a model can only be informally verified) and design (correct-
ness of designs cannot be checked)” [10]. The situation improved

1 Siemens AG Österreich, 1030 Vienna, Austria
email: {andreas.a.falkner,gottfried.schenner}@siemens.com

2 Technische Universität Wien, 1040 Vienna, Austria
email: {feinerer,salzer}@logic.at

with the UML standard [18], but much of the criticism still applies.
The semantics of UML diagrams are defined in a semi-formal man-
ner, partially resulting in incomplete or ambiguous definitions (see
e.g. [17]).

Therefore formal reasoning about UML requires the formalisation
of the intended semantics of UML using a rigorous language. Felfer-
nig et al. [15] propose UML class diagrams with is-a relationships
for the knowledge acquisition front-end of configuration knowledge
bases in the semantic web, and translate them to OIL, a precursor of
the ontology language OWL. Other authors translate UML class dia-
grams to formal languages like Object-Z [19], PVS [20], first-order
logic [4], or description logic [5].

Embedding class diagrams into an expressive formal language has
the advantage that different formalisms can be translated to the same
basic logic and therefore may occur mixed in a specification. For in-
stance, it is possible to express the semantics of constraints written in
OCL, the companion of UML, in the same first-order logic. Moreover,
well-developed reasoning techniques and theorem provers for these
logics can be used to show satisfiability and consistency. E.g., Cal-
vanese et al. show that frame languages, semantic data models and
object-oriented data models can be translated to a description logic
called ALUNI and that satisfiability and subsumption of models
can be checked in this framework [7].

This flexibility and generality comes at a price, however. Rea-
soning tasks in expressive logics are of a high computational com-
plexity. E.g., checking the consistency of ALUNI-specifications is
EXPTIME-complete [2]. Therefore we decided to extend an approach
that was first used by Lenzerini and Nobili for entity-relationship
(ER) diagrams [22]. We express the semantics of UML class dia-
grams by linear inequalities over positive integers. The expressive
power is the same as the one of class diagrams, which means that no
extra complexity is added. Polynomial graph-based algorithms can
be used to check satisfiability and to compute minimal models [9].
The next sections describe this approach in more detail, together
with the extensions necessary to cope with UML’s uniqueness con-
straints and lower bounds on the number of objects as first presented
in [13, 14].

Section 2 describes UML class diagrams in the context of configu-
ration management. Section 3 gives a compact overview of the trans-
lation of class diagrams to inequalities. Sections 4 and 5 present the
main contributions: Section 4 describes particular challenges aris-
ing from the use of class diagrams for configuration management,
whereas section 5 proposes solutions for some of them.

2 UML CLASS DIAGRAMS

To illustrate our approach, let us consider the UML specification in
figure 1, which models a technical system with several components:
Every section contains at least one and at most twenty elements, each

ECAI 2008 Workshop on Configuration Systems 1

with one or two modules. Each module has to be placed in a rack
consuming two slots. There are only one or two racks allowed per
section, and each of their five slots may be empty (hence a lower
cardinality of zero for the modules).

Section Element

Rack Slot Module

1

1..20

1

1..2

1

1..2

1

5

2

0..1

type: enum

width: int

Figure 1. Example of a UML specification

To model such a situation, the following basic elements of UML

class diagrams are needed:

Classes represent the types of available components.
Associations define relations between classes or objects. We restrict

our attention to binary associations, since general n-ary associa-
tions are less relevant in our context.

Multiplicities (also called cardinalities) constrain the number of
links between objects.

Association attributes: The ends of associations may be labelled
as unique (default) or non-unique with the meaning that the cor-
responding multiplicity constrains the number of different objects
or the number of links, respectively.

Lower bounds define the minimal number of objects instantiating a
particular class in a valid configuration (default 0). Formally, these
lower bounds could be defined as simple OCL constraints or by
introducing one additional singleton class with a lower-bounded
association to each other class.

Methods and attributes of classes (like type or width in the exam-
ple) currently have no impact on the computation of valid config-
urations, but are useful when generating code for the components
from the same specification.

Given a specification like in figure 1, several problems are of par-
ticular interest:

Consistency: For each class, is there a configuration that satisfies
the specification and that instantiates the class with at least one ob-
ject? Because of specification errors it may happen that the asso-
ciations are too restrictive and admit no reasonable solution. Sup-
pose we add a new association to our example expressing that each
slot is linked to exactly one section, and each section is linked to
up to four slots. Then it is not hard to see that the specification
can only be satisfied by having no sections, racks, and slots at all:
Every section is connected to at least one rack, which is linked to
five slots. But according to the new association, each section can
be linked to only four of the slots, so another section is needed,
which in turn requires at least one rack with five more slots, requir-
ing even more sections. For debugging a specification it is useful
to discover such inconsistencies as early as possible.

Construction of valid configurations: Given lower bounds on the
number of objects for certain types of components, the task is to
complete the configuration in a way such that it satisfies all mul-
tiplicities. Ideally, the configuration should be minimal, requiring

as few objects of each type as possible. Suppose we get the order
to build a section with three elements, i.e., the lower bound is one
for sections and three for elements. Then a configuration satisfy-
ing the specification in figure 1 also needs at least three modules,
six slots, and two racks.

Our approach to handle these problems is to transform the asso-
ciations to equivalent inequalities. For instance, the relationship be-
tween the two classes Slot and Module in figure 1 can be expressed
by the inequalities

0 · |Slot| ≤ 2 · |Module|
2 · |Module| ≤ 1 · |Slot|

where |Slot| and |Module| denote the required numbers of slots and
modules, respectively. These inequalities are equivalent to the dia-
gram in the sense that every solution corresponds to an object model
of the class diagram, and every model of the class diagram corre-
sponds to a solution of the inequalities. The next section describes
this transformation in more detail.

3 FROM UML TO LINEAR INEQUALITIES
Consider the general situation depicted in figure 2, where A and B
are two classes related by an association with multiplicities m1..m2

and n1..n2, respectively. Each of the attributes u and v may have the
value unique or non-unique. The situation u = unique means that
every A-object is linked to at least m1 and at most m2 different B-
objects, whereas u = non-unique means that every A-object has at
least m1 and at most m2 links to B-objects, which do not have to be
different from each other. The attribute v is interpreted analogously,
with the roles of the classes A and B reversed.

A B
n1..n2 u

v m1..m2

Figure 2. Binary association with multiplicities – the general setting

The inequalities characterising the association depend on the val-
ues of u and v. We distinguish three cases.

u = v = non-unique: The numbers of objects instantiating the
classes A and B, denoted by |A| and |B|, satisfy the inequalities

m1 · |A| ≤ n2 · |B|
n1 · |B| ≤ m2 · |A|

The number ` of links between objects of class A and class B may
take any value between the following bounds:

max(m1 · |A|, n1 · |B|) ≤ ` ≤ min(m2 · |A|, n2 · |B|)

u = v = unique: The inequalities are the same as above, plus
two more:

|A| > 0 =⇒ |B| ≥ m1

|B| > 0 =⇒ |A| ≥ n1

When counting links only once for every pair of objects, their number
can be bounded by the following expressions:

max(m1 · |A|, n1 · |B|) ≤ ` ≤ min(m2 · |A|, n2 · |B|, |A| · |B|)

2 ECAI 2008 Workshop on Configuration Systems

u = non-unique and v = unique: This case is a combination
of the other two plus an additional inequality.

n1 · |B| ≤ m2 · |A|
m1 > 0 =⇒ |A| ≤ n2 · |B|
|B| > 0 =⇒ |A| ≥ n1

For the number of links we obtain a new upper bound:

max(m1 · |A|, n1 · |B|) ≤ ` ≤ min(m2 · |A|, m2 · n2 · |B|)

Note that for m1 > 0 the upper bound simplifies to m2 · |A|.
The fourth case, u = unique and v = non-unique, is symmetric to

this one.
As an example, consider the binary association in figure 3. We

specify the requirement that we want to have at least one B-object
directly in the box of B, instead of adding an OCL constraint. The

A B ≥ 1
1..2 non-unique

unique 3..4

Figure 3. Binary association with multiplicities – an example

corresponding inequalities, one specifying the lower bound and three
for the unique/non-unique case, have the form

|B| ≥ 1
1 · |B| ≤ 4 · |A|

3 > 0 =⇒ |A| ≤ 2 · |B|
|B| > 0 =⇒ |A| ≥ 1

The minimal solution of these inequalities is |A| = |B| = 1; the
number ` of links is bounded by 3 ≤ ` ≤ 4. It might not be com-
pletely intuitive that the minimal configuration (figure 4) consists of
only one object for each class (in spite of multiplicity 3..4), but three
or four links (in spite of multiplicity 1..2). The point is of course that
the first multiplicity constrains links and the second one objects.ma1 mb1

ma1 mb1

Figure 4. Minimal models for the specification in figure 3 with ` = 3
and ` = 4

In [13, 14], the following results are proved:

• The class diagram is consistent if and only if the inequalities admit
a non-trivial solution, i.e., if at least one variable is assigned a
value different from zero.

• The inequalities are complete, i.e., every valid object model of the
class diagram satisfies the corresponding inequalities.

• The inequalities are correct, i.e., every solution for the cardinal-
ities and for the number of links corresponds to a valid object
model of the diagram.

• The solutions are closed under linear combination and minimum
operation. This implies that the minimal solution (requiring the
least number of objects) is uniquely determined. Moreover, if
there is a non-trivial solution, then there are infinitely many ones.

• The inequalities can be solved efficiently over the rational num-
bers using shortest-path algorithms for graphs. The rational solu-
tion immediately gives an integer solution. The minimal solution
is harder to find, but usually requires only little extra effort.

• General n-ary associations can be handled similarly, as long as
all n ends of an association carry the same label, unique or non-
unique.

4 CHALLENGES

The approach described in the last section handles many interesting
situations correctly. However, in applications where the product is
a large system with many components like a railway interlocking
system, additional aspects are important [12]. To illustrate the issues
consider the specification in figure 1, which is a simplified fragment
of a real-world specification in that domain.

�
��
e1 �
��

e2 �
��
e3

�
��
m1a �
��

m1b �
��
m2 �
��

m3a �
��
m3b

�
��
s1a �
��

s1b �
��
s1c �
��

s1d �
��
s1e �
��

s2a �
��
s2b �
��

s2c �
��
s2d �
��

s2e

�
��
r1 �
��

r2

C
C
C

A
A

A

�
�

���
�

�

�
�
�

A
A
A

�
�

� C
C
C

@
@

@@

�
�
�

�
�

��

C
C
C

A
A

A

�
�
�

�
�
�

A
A

A@
@

@@

�
�

�

Figure 5. Configuration satisfying the specification in figure 1 (r = racks,
s = slots, m = modules, e = elements, section omitted)

The following constraints are not captured by the UML model:

1. “All slots occupied by a module must belong to the same rack,”
and “all modules of an element must be placed in the same rack.”
According to the semantics of UML class diagrams, figure 5 shows
a valid configuration (we omit the section, which is connected to
all racks and elements). However, it violates the additional con-
straint, since module m2 is connected to slots of different racks.
To satisfy the constraint we need a third rack which in turn re-
quires a second section, or we must remove one module of e1

or e3.
2. “The rack housing an element – via the slots and modules – must

belong to the same section as the element.” UML class diagrams
without OCL do not offer any means to specify that the relation
Section-Element should be a subrelation of the composed rela-
tion Section-Rack-Slot-Module-Element, or that these two rela-
tions should be equal.

3. “The objects of class ‘Element’ have an attribute ‘type’ with value
‘1-module’ or ‘2-module’ which controls the number of modules
connected to the element.” According to the specification we have
the choice to connect each element to either one or two modules.
The intention, however, is to have two types of elements compet-
ing for the same slots. How many elements of each type are to
be used is not up to the configuration program but usually deter-
mined in advance. Therefore, removing a module from Fig. 5 as
mentioned above in challenge 1 is no viable option.

Moreover, there are tasks beyond checking for consistency or min-
imising configurations with respect to the number of objects that are
useful in practice.

ECAI 2008 Workshop on Configuration Systems 3

4. Reasoning about cardinalities. In figure 1 the maximum of twenty
elements per sections can never be reached. A section has at most
two racks, therefore at most ten slots, therefore at most five mod-
ules, and therefore at most five elements. If the additional con-
straint requiring the same rack for the modules of an element
is taken into account, it can be at most four elements. This is a
static statement about the model. The discrepancy between four
and twenty may indicate a specification error, like inconsistency
does.

5. Partial configurations. Similar statements can be derived for par-
tial configurations: If a section contains already an element with
two modules, then there are only two (not three) additional ele-
ments allowed. This is a relevant information for the user.

6. Immediate feedback. Getting this kind of information fast is vi-
tal for a staged configuration process. The user creates sections
and elements first, based upon the logics of the system. The (in-
termediate) result might already be used for answering a tender.
The configuration of the hardware is a second step, e.g. after win-
ning the bid. However, the user must get the information whether
his/her setting of sections and elements will yield a correct hard-
ware configuration as early as possible, so that there are no unex-
pected costs for additional sections. Even if the hardware configu-
ration itself is done before the bid, it is important to know whether
there is a complete solution. Generating the solution itself (i.e.
placement of the modules) is complicated and time-consuming
and cannot be done on-the-fly. Furthermore it will take longest
if there is no valid solution (similar to pigeon-hole problems).

The next section describes extensions of our approach that address
some of the challenges.

5 SOME SOLUTIONS

5.1 The attribute ‘all-same’

One recurring requirement is that the links of an object must not
be connected to several objects instantiating the partner class, but
that they all have to connect to the same object like stated in the
first challenge in section 4. To be able to model such constraints we
propose a new attribute that we call ‘all-same’. It has essentially the
same meaning as the attribute ‘non-unique’, i.e., the corresponding
multiplicity constrains the links, but it additionally requires that all
links of an object have to end at the same partner object.

The new attribute solves some of the issues described in the last
section. For instance, if we avoid to model the slots of a rack by a
separate class (figure 6) then ‘all-same’ ensures that every module is
associated with exactly one rack.

Module Rack
0..5 all-same

non-unique 2

Figure 6. Example using the all-same attribute

We investigate now the interaction of the new attribute with the
other two, i.e., we have to consider three cases. For the general setup
see figure 2.

u = all-same and v = non-unique: The number of objects
instantiating the classes A and B satisfy the inequalities:3

m2 > 0 =⇒ d n1
m2

e · |B| ≤ |A|
m1 > 0 =⇒ |A| ≤ b n2

m1
c · |B|

The number of links may take values within the following bounds:

` ≥ max(m1 · |A|, n1 · |B|)

` ≤ |A| mod |B| ·min(m2 · d |A|
|B|e, n2)

+ (|B| − |A| mod |B|) ·min(m2 · b |A|
|B|c, n2)

The upper bound simplifies to m2 · |A| for m2 · d |A|
|B|e ≤ n2, and to

n2 · |B| for n2 ≤ m2 · b |A|
|B|c.

As an example, the number of objects in figure 6 are constrained
by

2 > 0 =⇒ d 0
2
e · |Rack| ≤ |Module|

2 > 0 =⇒ |Module| ≤ b 5
2
c · |Rack|

which is equivalent to |Module| ≤ 2·|Rack|. This constraint correctly
reflects the semantics of the ‘all-same’ attribute: Since both links of
each module have to connect to the same rack, at most four of the
five slots of the rack can be utilised, i.e., the number of modules is at
most twice the number of racks. The number of racks is unbounded,
since the cardinality 0..5 admits empty racks not connected to any
module. For the links we obtain

` ≥ max(2 · |Module|, 0 · |Rack|) = 2 · |Module|

` ≤ 2 · |Module| (since 2 · d |Module|
|Rack| e ≤ 2 · d 2·|Rack|

|Rack| e = 2 · 2 ≤ 5)

i.e., we have ` = 2 · |Module|. This is intuitively correct since each
module requires exactly two links.

u = all-same and v = unique: For such an association the
cardinalities of the classes satisfy the following inequalities:

n1 · |B| ≤ |A|
m1 > 0 =⇒ |A| ≤ n2 · |B|

The number of links is bounded by:

max(m1 · |A|, n1 · |B|) ≤ ` ≤ min(m2 · |A|, m2 · n2 · |B|)

which is the same interval as in the case non-unique/unique. Note
that for m1 > 0 the inequalities can be more compactly written as
n1 · |B| ≤ |A| ≤ n2 · |B| and m1 · |A| ≤ ` ≤ m2 · |A|.

u = v = all-same: Such an association admits non-trivial so-
lutions only for m1 ≤ n2 and n1 ≤ m2, i.e., the two multiplicities
have to overlap. In this case the cardinalities |A| and |B| are related
by the following inequalities:

m1 > 0 =⇒ |A| ≤ |B|
n1 > 0 =⇒ |B| ≤ |A|

The number of links may take values within the following bounds:

min(|A|, |B|) ·max(m1, n1) ≤ ` ≤ min(|A|, |B|) ·min(m2, n2)

3 bxc denotes the greatest integer less than or equal to x (‘floor’ of x), dxe
the least integer greater than or equal to x (‘ceiling’ of x).

4 ECAI 2008 Workshop on Configuration Systems

Proposition 1 The inequalities above are complete and correct, i.e.:
Given a binary association with multiplicities and at least one at-
tribute ‘all-same’, then the numbers of objects and links in every in-
stantiation of the association satisfy the inequalities, and conversely,
every solution of the inequalities corresponds to an instantiation with
the appropriate number of objects and links.

Note that the statements at the end of section 3 concerning the
solvability of inequalities and the properties of the solutions also ap-
ply to the inequalities in this section, since the inequalities here are
of the same form as those there.

5.2 Redundant cardinalities
Challenge 4 in section 4 requires reasoning about cardinalities. A
limited form of such reasoning is obtained as a by-product of the
algorithm for checking the consistency of inequalities [14], which
computes the strongest relationship between any two classes. For the
inequalities corresponding to the specification in figure 1, this algo-
rithm derives the inequality 1 · |Element| ≤ 5 · |Section| from

1 · |Element| ≤ 1 · |Module|
2 · |Module| ≤ 1 · |Slot|

1 · |Slot| ≤ 5 · |Rack|
1 · |Rack| ≤ 2 · |Section|

The new inequality makes the inequality 1·|Element| ≤ 20·|Section|,
which corresponds to the direct association between sections and el-
ements, redundant. Hence the algorithm does not only check for con-
sistency but also provides information about cardinalities that cannot
be fully exploited.

5.3 Subclassing
Challenge 3 in section 4 addresses situations where instances of the
same class should behave differently in configurations depending on
some property, like the objects of class ‘Element’ in figure 1, where
the attribute ‘type’ distinguishes several types of elements requiring
different numbers of modules. A more UML-ish way to model such a
situation is by using subclasses. Every value of the type defines a sep-
arate subclass, each with an association to class ‘Module’ specialis-
ing the general association between the classes ‘Element’ and ‘Mod-
ule’ (figure 7). The interaction of subclass hierarchies with cardinal-

Element

����*

Element-1

aaaaa
1

1

HHHHY

Element-2

!!!!!
1

2

1

1..2

Module

Figure 7. Different types of elements modelled as subclasses

ities has been already investigated in the context of ER-diagrams [6],
where the authors describe a method to eliminate hierarchies by in-
troducing additional classes. This reduction is fairly complex and
may be exponential in the worst case. A recent paper [3] proposes

a much simpler algorithm that is able to cope with class diagrams
and generalisation set constraints as defined in UML 2.0.

Even though our configuration problems need hierarchies, we use
only a small part of the possibilities offered by UML. Therefore our
aim is to tailor the general approach to our particular needs to become
as efficient as possible. For instance, the specification above can be
translated to a single equation:

1 · |Element-1|+ 2 · |Element-2| = 1 · |Module|

Our types of hierarchies translate to linear equalities and inequali-
ties, possessing in general more than two variables. Integer program-
ming with two variables is already NP-complete [21]4, and adding
variables increases complexity even further. However, this additional
complexity is intrinsic to the original problem and thus cannot be
helped; it is not caused by modelling the configuration problem by
numerical (in)equalities. Moreover, linear equalities and inequalities
over integers occur in many fields like integer programming or unifi-
cation theory, and several efficient algorithms for solving them have
been proposed [1, 8].

5.4 Generate and test
Our approach of translating specifications of configuration problems
to linear inequalities is fairly general, but of course has its limitations.
In particular, the implicit assumption so far was that the placement of
links is only constrained by the cardinalities. If additional constraints
rule out certain links, then we may need more objects than suggested
by the inequalities. If, for instance, objects of subtype ‘Element-2’
(see figure 7) are preferable costwise to those of subtype ‘Element-
1’, we might accept more racks than necessary in an object-minimal
configuration. Numeric cost functions might still be compatible with
our representation of class diagrams. Other constraints like mutual
exclusion conditions, however, can hardly be handled by our numeric
framework. In such cases we can still use generate-and-test as a fall-
back solution: The algorithm for solving inequalities generates pre-
solutions that satisfy most of the constraints, and in a second step
these solutions are tested with respect to the remaining constraints.
Even if we have to iterate several times between these two stages, the
overall procedure stays usable as long as the first stage is fast, which
it is, and the number of extra constraints to be handled by the second
stage is small. These considerations provide at least a partial answer
to challenge 6 of section 4.

6 CONCLUSION
This paper presented an approach that promises to deal efficiently
and declaratively with practical configuration problems. After sum-
marising the basic translation of class diagrams to inequalities we
described specific challenges that in our experience are of particular
importance. We proposed solutions for some of them. Most notably,
we introduced the new attribute ‘all-same’, we argued that check-
ing for consistency also provides information about redundant cardi-
nalities, and we presented ideas how to deal with subclasses in our
framework.

Several open problems remain. On the theoretical side, handling
composed associations and their relationship to other associations
(challenge 2) and using the approach not only for static analysis

4 This is no contradiction to the fact that we are able to solve the inequalities
encountered so far efficiently. The reason is that we need no upper bounds,
i.e., we do not have inequalities of the form ax + by ≤ c where a, b, c are
constants and x, y are variables.

ECAI 2008 Workshop on Configuration Systems 5

(challenge 5) are the most important ones. On the practical side we
think that the theory is sufficiently developed by now such that it is
worth the effort to integrate the algorithms into an integrated devel-
opment environment that is capable of manipulating UML specifica-
tions, like Eclipse. Such an implementation will allow us to test our
approach by applying it to configuration problems that are compara-
ble in structure, size, and complexity to real-world problems.

REFERENCES

[1] Farid Ajili and Evelyne Contejean, ‘Avoiding slack variables in the
solving of linear diophantine equations and inequations’, Theoretical
Computer Science, 173(1), 183–208, (1997).

[2] The Description Logic Handbook: Theory, Implementation, and Appli-
cations, eds., Franz Baader, Diego Calvanese, Deborah McGuinness,
Daniele Nardi, and Peter Patel-Schneider, Cambridge University Press,
2003.

[3] Mira Balaban and Azzam Maraee, ‘Consistency of UML class diagrams
with hierarchy constraints’, in Next Generation Information Technolo-
gies and Systems, volume 4032 of Lecture Notes in Computer Science,
pp. 71–82. Springer Berlin / Heidelberg, (2006).

[4] Bernhard Beckert, Uwe Keller, and Peter Schmitt, ‘Translating the
Object Constraint Language into First-order Predicate Logic’, in Pro-
ceedings, VERIFY, Workshop at Federated Logic Conferences (FLoC),
Copenhagen, Denmark, (2002).

[5] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo, ‘Rea-
soning on UML class diagrams’, Artificial Intelligence, 168(1–2), 70–
118, (2005).

[6] Diego Calvanese and Maurizio Lenzerini, ‘On the interaction between
ISA and cardinality constraints’, in Proceedings of the Tenth Interna-
tional Conference on Data Engineering, pp. 204–213, Washington, DC,
USA, (1994). IEEE Computer Society.

[7] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi, ‘Unifying
class-based representation formalisms’, Journal of Artificial Intelli-
gence Research, 11, 199–240, (1999).

[8] Evelyne Contejean and Hervé Devie, ‘An efficient incremental algo-
rithm for solving systems of linear diophantine equations’, Information
and Computation, 113(1), 143–172, (1994).

[9] Konrad Engel and Sven Hartmann, ‘Constructing realizers of seman-
tic entity relationship schemes’, Technical report, Universität Rostock,
Fachbereich Mathematik, 18051 Rostock, Germany, (1995).

[10] Andy S. Evans, ‘Reasoning with UML class diagrams’, in WIFT ’98:
Proceedings of the Second IEEE Workshop on Industrial Strength For-
mal Specification Techniques, p. 102, Washington, DC, USA, (1998).
IEEE Computer Society.

[11] A. Falkner, A. Haselböck, G. Schenner, and H. Schreiner, ‘Bene-
fits from three configurator generations’, in Innovative Processes and
Products for Mass Customization, eds., Th. Blecker, K. Edwards,
G. Friedrich, L. Hvam, and F. Salvodor, volume 3, pp. 89–103, Berlin,
(2007). GITO-Verlag.

[12] Andreas Falkner and Gerhard Fleischanderl, ‘Configuration require-
ments from railway interlocking stations’, in IJCAI-01 Workshop on
Configuration, Seattle, WA, (August 2001).

[13] Ingo Feinerer, A Formal Treatment of UML Class Diagrams as an Effi-
cient Method for Configuration Management, Dissertation, Theory and
Logic Group, Institute of Computer Languages, Vienna University of
Technology, Austria, March 2007.

[14] Ingo Feinerer and Gernot Salzer, ‘Consistency and minimality of UML
class specifications with multiplicities and uniqueness constraints’, in
Proceedings of the 1st IEEE/IFIP International Symposium on The-
oretical Aspects of Software Engineering, June 6–8, 2007, Shanghai,
China, pp. 411–420. IEEE Computer Society Press, (2007).

[15] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Markus
Stumptner, and Markus Zanker, ‘Configuration knowledge representa-
tions for semantic web applications’, Artificial Intelligence for Engi-
neering Design, Analysis and Manufacturing, 17(1), 31–50, (2003).

[16] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus
Zanker, ‘Configuration knowledge representation using UML/OCL’, in
UML ’02: Proceedings of the 5th International Conference on The Uni-
fied Modeling Language, pp. 49–62, London, UK, (2002). Springer-
Verlag.

[17] Gonzalo Génova, Juan Llorens, and Paloma Martı́nez, ‘The meaning of

multiplicity of n-ary associations in UML’, Software and System Mod-
eling, 1(2), 86–97, (2002).

[18] Object Management Group, Unified Modeling Language 2.1.1 Super-
structure Specification, 2007. http://www.uml.org/#UML2.0.

[19] Soon-Kyeong Kim and David A. Carrington, ‘Formalizing the UML
class diagram using Object-Z’, in UML’99: The Unified Modeling Lan-
guage - Beyond the Standard, Second International Conference, Fort
Collins, CO, USA, October 28-30, 1999, Proceedings, eds., Robert B.
France and Bernhard Rumpe, volume 1723 of LNCS, pp. 83–98.
Springer, (1999).

[20] P. Krishnan, ‘Consistency checks for UML’, in APSEC ’00: Proceed-
ings of the Seventh Asia-Pacific Software Engineering Conference, p.
162, Washington, DC, USA, (2000). IEEE Computer Society.

[21] Jeffrey Lagarias, ‘The computational complexity of simultaneous dio-
phantine approximation problems’, SIAM J. on Computing, 14(1), 196–
209, (1985).

[22] Maurizio Lenzerini and Paolo Nobili, ‘On the satisfiability of depen-
dency constraints in entity-relationship schemata’, Information Sys-
tems, 15(4), 453–461, (1990).

6 ECAI 2008 Workshop on Configuration Systems

Modeling, Representing, and Configuring
Restricted Part-Whole Relations

Lothar Hotz 1

Abstract. Part-whole relations are the backbone of configuration
systems. In this paper, part-whole relations are combined with other
relations and restrictions leading to here-called restricted aggregates.
Depending on what is given, aggregates, parts, or/and relations be-
tween parts, different tasks have to be solved. General aggregation
reasoning chunks are developed and represented with a configura-
tion language. The approach is applied to the domain of constructing
scene interpretations.

1 Introduction

Configuration is the task of composing parameterisable objects
(parts) to wholes (aggregates) such that a given goal is fulfilled by
the resulting construction. For this task, descriptions of aggregates
and parts of a domain (domain objects) are given in a configuration
model and a configuration tool is used to create a certain construc-
tion. An aggregate is typically described by its potential parts and
further restrictions that have to be fulfilled between the parts. Thus,
those restricted aggregates require that certain relations and predi-
cates are true for their parts. Domain objects have parameters (i.e.
relations to primitive data types) and n-ary relations to other domain
objects, which can be given by a task specification or can be com-
puted by the configuration tool (parameters are set and relations are
established).

Configuration technologies are applied in technical areas like au-
tomotive, telecommunication, but also in software, services and con-
struction of scene interpretations.

In the following, we develop general aggregation reasoning
chunks that allow to construct aggregates from given parts and in-
tegrate parts in given aggregates. Furthermore, restricted aggregates,
as they are considered here, require certain relations and predicates
to be true for their parts. Also, when given such relations between
parts, appropriate aggregates should be created that can contain those
restricted parts. Thus, for diverse, here called, key situations (parts
given with or without relations, aggregates given with or without
parts) the general aggregation reasoning chunks will construct com-
plete aggregates that guarantee the validity of the restriction.

As an example, we map the general aggregation reasoning chunks
to a structure-based configuration language, such that the aggregate
can be computed by an appropriate configuration tool [10]. Other
representations e.g. with rule languages or usual programming lan-
guages are conceivable [11].

The general aggregation reasoning chunks are applied in the do-
main of Scene Interpretation, which has already been shown to be
a configuration task [9]. In this domain, aggregates like entrance or

1 HITeC e.V., University of Hamburg, Germany, email: hotz@informatik.uni-
hamburg.de

balcony consist of certain parts like door, railing, stairs, sign, win-
dow. Parts have to fulfill restrictions like spatial relations of the kind
stairs below door, sign left-neighbor door etc. An aggregate may ad-
ditionally occur as part of a comprising aggregate like facade. The
task is to construct a description with parts and aggregates of a scene
given an image.2

In other approaches, compositional relations between parts and
aggregates are considered from the epistemological point of view
[19, 21, 15]. Beside technical aspects of how to represent parts and
wholes with a given configuration language, the relationship between
the compositional relation and further restrictions are less considered
in those contributions. In this paper, the interplay between those re-
lations are analyzed.

In principle, configuration technologies as described in [2, 4, 13,
17, 7, 12] provide a basic framework for constructing restricted ag-
gregates. While this includes means for modeling, representing, and
processing part-whole relations, it is seldom clarified how these fa-
cilities are applied or used for creating part-whole relations, or espe-
cially restricted part-whole relations.

This paper tries to further close this gap. Thus, we provide an anal-
ysis of possible aggregation situations and their representations by
means of concepts and constraints. For this task, we first prescribe
the structure-oriented configuration approach, which is applied here
(Section 2), than consider the problem in more detail (Section 3).
Section 4 describes the general solution of our approach for creating
restricted part-whole relations and an implementation with a config-
uration language. Sections 5 and 6 describe some experiments and
give a summary of the approach, respectively.

2 Structure-oriented Configuration Approach
As background, we follow the structure-oriented configuration ap-
proach as it is described by [1, 2, 3, 4, 5, 8, 16, 17, 18, 22]. While
this approach has several variants we focus in the following on four
separate knowledge types which can be used for modeling a certain
domain:

Concept Hierarchy Domain objects are described using a highly
expressive description language providing concepts, a taxonom-
ical hierarchy (based on the is-a relation), and structural rela-
tions like the compositional hierarchy based on the has-parts

relation. Parameters specify domain-object attributes with value
intervals, sets of values (enumerations), or constant values. In-
stances selected for a concrete construction are instantiations of
the concepts and represent concrete domain objects. Parameters

2 Our task differs to [20] in the fact that we construct descriptions of scenes
(including aggregates and parts), while [20] computes spatial arrangements
of non-aggregated scene objects.

ECAI 2008 Workshop on Configuration Systems 7

and structural relations of a concept are also referred to as prop-
erties of the concept. When instantiated, the properties of an in-
stance are initialized by the values or value ranges specified in the
concepts.

Constraints Constraints pertaining to properties of more than one
object are administered by a constraint net. Conceptual con-
straints are formulated as part of the configuration model. Con-
ceptual constraints consists of a condition and an action part.
The condition specifies a structural situation of instantiated con-
cepts. If this structural situation is fulfilled by some instances,
constraint actions that are formulated in the action part are in-
stantiated to constraints. Constraint actions can represent restric-
tions between properties (i.e. constraint relations) or operations
like create-instance (i.e. constraint operations). Constraints
can be multi-directional, i.e. propagated regardless of the order
in which constraint variables are instantiated or changed. At any
given time, the remaining possible values of a constraint variable
are given as intervals, value sets, or constant values.

Task Description A configuration task is specified in terms of an
aggregate which must be configured (the goal) and possibly addi-
tional restrictions such as choices of parts, prescribed properties,
etc. Typically, the goal is represented by the root node of the com-
positional hierarchy.

Procedural Knowledge The configuration process provides a step-
wise composition of a construction. Each step is one of the follow-
ing kinds of construction steps: aggregate instantiation (or top-
down structuring), part integration (or bottom-up structuring),
instance specialization, and parameterization. A step reduces a
property value of an instance to a subset (reduced value) or finally
to a constant (fixed value).
After each step the constraint net is optionally propagated. Config-
uration strategies are used to organize this configuration process
in a declarative manner. For example, it is possible to prescribe
phases of bottom-up or top-down processing conditioned on cer-
tain features of the evolving construction.

For every of the above mentioned knowledge types, a specific lan-
guage is given which allows to express domain objects with their
attributes and restrictions as well as the configuration process (see
e.g. the Configuration Knowledge Modeling Language CKML de-
scribed in [10]). In Figure 1, we sketch some constraint actions of
the constraint language part of CKML that are needed for the fol-
lowing examples. The constraint operation create-instance and
ensure-relation are the main mechanism for creating instances
and relations between them. create-instance instantiates a con-
cept after selecting one of given concept types.3 Before establish-
ing a relation between given instances, ensure-relation checks
whether the relation already exists. Numeric constraint relations are
used for comparing and computing parameter values given by con-
stants, intervals, or enumerations in the typical mathematical form
(which includes interval arithmetic).

For representing aggregates with their parts, spatial relations and
restrictions, i.e. for representing restricted aggregates, concepts with
their taxonomical and compositional relations as well as constraints
can be applied, leading to restricted aggregate models. However, us-
ing this configuration technology for scene interpretation, the ques-
tion arises, how these facilities can effectively be used both for mod-
elling a domain (i.e. the analysis and in-depth understanding of the

3 Concept types can be selected e.g. by considering probabilities. In our cur-
rent application domain, statistics can be computed from annotated images.
However, this aspect is not further discussed in this paper.

domain) and operationalizing this knowledge for the scene interpre-
tation process.

Configuration systems considered here typically do not reason
about concepts, but only about instances (for other approaches see
e.g. [14]). Thus, the language facilities provided by such systems use
instances for reasoning, e.g. conceptual constraints are fulfilled if an
instance relation structure matches the structural situations. Thus, in-
stead of description logics, which may also reason about concepts, in
configuration systems, appropriate instances have to be created and
for the created instances knowledge entities have to be inserted in the
configuration model.4 The question now is, what knowledge entities
have to be inserted for reasoning about restricted aggregates?

create-instance Creates a new instance
for one of given
concept types.

ensure-relation Establishes a relation of
of a given name
between two instances.

less, greater, equal . . . Numeric constraint
relations.

Figure 1. Predefined operations and relations (i.e. constraint actions) that
are used in the following.

3 Requirements and Application Example

In the following, we consider aggregates locally described by their
parts and restrictions. With a local representation of aggregates,
all information about their parts are kept at one place, i.e. are not
distributed over the configuration model. Especially restrictions be-
tween parts of different aggregates are not allowed. However, a
part may be part of different alternative aggregates, e.g. a door
might be part of an entrance or a balcony. Examples of locally
defined aggregates are illustrated in Figure 2. It shows a general
Scene-Aggregate and a specific Entrance aggregate with parts
and several spatial relations between them. For the aggregate and
parts, concept types (e.g. Stairs, Door), parameters (e.g. size-x),
and relations between the parts (e.g. belowNeighbor, overlap) can
be described. In the example, we consider spatial relations of parts,
however, arbitrary n-ary restrictions between properties of the aggre-
gate’s parts can be specified with aggregate restrictions.

Beside the typical signature for concept types, parameters and re-
lations, discriminators are given which describe a sufficient condi-
tion for the aggregate - if the discriminator holds, then the aggregate
should exist. A conjunctive combination of parts and relations can
be given as a discriminator. Thus, a discriminator can be only one
part or several parts, as well as one or more relation between parts.
In the example in Figure 2, six discriminators are given each con-
sisting of one relation (e.g. ?b-s-c representing ?stairs0 below

?canopy4).
Each discriminator is a “unique selling point” of an aggregate in

the sense that it distinguishes this aggregate from other aggregates.
However, once an aggregate has been created, also other restrictions
are examined, e.g. further required parts. These restrictions are nec-
essary conditions. With this mechanism, complete descriptions of ag-
gregates are created. Note that this may lead to hypotheses of parts

4 However, reasoning about concepts is restricted (e.g. n-ary roles are not
provided in description logic systems) and thus, less used for configuration
tasks.

8 ECAI 2008 Workshop on Configuration Systems

which may exist or have to exist, if the aggregate exists. For exam-
ple in the facade domain, a door of an entrance is hypothesized, if
the above mentioned condition ?stairs0 below ?canopy4 is ful-
filled through observed stairs and canopy.5

This reasoning is embedded in a backtracking environment as typ-
ically provided by configuration systems. Backtracking occurs when
inferred decisions lead to a conflict, e.g. signified by the constraint
net. In this case, conflict resolution mechanisms should be applied
[10].

In the following, we assume that such aggregate models are manu-
ally created or learned from a set of given cases e.g. by Version Space
Learning, see [6]. Especially discriminators (i.e. sufficient condi-
tions) have to be identified by those methods.

Requirements for the general aggregation reasoning chunks.
The aggregation chunks which we target should cover diverse key sit-
uations, which are given through the task specification or may come
up through reasoning during the configuration process. The key sit-
uations are described in terms of given instances and properties. A
property is given, if its value is fixed or reduced (see Section 2), oth-
erwise it is original as it was specified in the concept (e.g. a parame-
ter pos-x-1 is [0 inf]). The chunks should:

• allow the construction of a new aggregate when one or more parts
with relations or parameters are given (bottom-up structuring),

• allow the construction of new parts when an aggregate is given
(top-down structuring),

• integrate given parts in given aggregates (bottom-up integration),
• use given parts for decomposing given aggregates (top-down de-

composition),
• check given restrictions when all or some parts and aggregates are

present (aggregate consistency),
• establish the described restrictions when parts and aggregates do

not yet fulfill the restrictions (restriction establishment),
• determine appropriate types of aggregates and parts when certain

relations but no specific type information are given (object spe-
cialization),

• select one aggregate types and parts when several alternatives are
possible (type selection).

Modeling of restrictions. For modeling restrictions, we consider
a two step approach: First, physical parameters are obtained through
external systems, e.g. image processing systems, that supply geo-
metric parameters like position and size of objects. These parameters
cover implicit relations between objects, in particular spatial predi-
cates as defined by predicates such as above-p. Those relations can
be made explicit by establishing appropriate explicit relations be-
tween objects, such as above, left, right etc. Explicit relations
are mainly used for describing restrictions on a high level as illus-
trated in Figure 2. They abstract from concrete numbers representing
physical parameters.

Depending on the key situation, the relations are computed, e.g.:

• If an explicit relation between objects is given, the physical param-
eters should be changed, so that the geometry holds between the
parameters. For example, in a two dimensional x/y coordination

5 Discriminators should not be confused with mandatory or optional parts
of an aggregate. In the example, all parts (door, stairs, and canopy) are
mandatory for an entrance. For the existence of an entrance not all of them
have to be observed, but only those mentioned in the discriminators. How-
ever, all mandatory parts will be created as hypotheses once the aggregate
is instantiated.

system, if an object o1 is identified to be below o2, the position
parameter y of o1 should be higher than y of o2 (expecting the
origin to be at the top left corner).

• If an implicit relation between physical parameters is given, the
explicit relation between objects should be established. For exam-
ple, in a two dimensional x/y coordination system, if the position
parameters of o1 (i.e. y) is higher than y of o2, the relation o1 is
below o2 should be established.

• If the physical parameters are changed, the explicit spatial rela-
tions should be checked, if they hold.

(define-aggregate :name Scene-Aggregate
:parameters
((size-x [0 inf])
(size-Y [0 inf])
(pos-x-1 [0 inf]) (pos-y-1 [0 inf])
(pos-x-2 [0 inf]) (pos-y-1 [0 inf])
(parts-top-left-x-variability [0 inf])
(parts-top-left-y-variability [0 inf])
(parts-bottom-right-x-variability [0 inf])
(parts-bottom-right-y-variability [0 inf]))

:parts
((:name ?parts :type Scene-Aggregate

:number-restriction [0 inf]))
:restrictions
((:name ?variability

:constraint
(check-variability ?a ?parts))

(:name ?bounding-box
:constraint
(check-bounding-box ?a ?parts))))

(define-aggregate :name Entrance
:super Scene-Aggregate
:parameters
((size-x [184 295])
(size-Y [299 420])
(parts-top-left-x-variability [7 131])
(parts-top-left-y-variability [1 284])
(parts-bottom-right-x-variability [7 131])
(parts-bottom-right-y-variability [1 284]))

:parts
((:name ?stairs0 :type Stairs)
(:name ?door1 :type Door)
(:name ?sign2 :type Sign)
(:name ?railing3 :type Railing)
(:name ?canopy4 :type Canopy))

:restrictions
((:name ?bn-s-d :relation belowNeighbor

:subject ?stairs0 :object ?door1)
(:name ?b-s-c :relation below
:subject ?stairs0 :object ?canopy4)

(:name ?o-s-r :relation overlap
:subject ?stairs0 :object ?railing3)

(:name ?bn-s-s :relation belowNeighbor
:subject ?stairs0 :object ?sign2)

(:name ?an-d-s :relation aboveNeighbor
:subject ?door1 :object ?stairs0)

(:name ?bn-d-c :relation belowNeighbor
:subject ?door1 :object ?canopy4)

:discriminators
((?bn-s-d) (?b-s-c) (?o-s-r)
(?bn-s-s) (?an-d-s) (?bn-d-c))))

Figure 2. Local aggregate description. A general Scene-Aggregate,
which specifies restrictions that hold for all aggregates and a specific

Entrance aggregate that inherits the general restrictions and properties.
Question marked symbols (e.g. ?an-d-s) indicate variables, which can

bind objects or relations.

In Figure 3 the physical parameters and relations are listed, which
are used in the following domain of Scene Interpretation.

4 Analysis of Aggregation Processing and
Representation with a Configuration Language

In this section, we identify all key situations that may occur during
the processing of restricted aggregates. This is done by permuting
possible variabilities given by restricted aggregate models. Further-
more, for each key situation we provide representations based on fa-
cilities given by a configuration language.

As described above, depending on the given information about ag-
gregates and parts, certain activities should be performed by the con-
figuration process. For an aggregation, a key situation can be charac-
terized by the presence or absence of an aggregate A instance (e.g. a

ECAI 2008 Workshop on Configuration Systems 9

Spatial relations reflect the appropriate geometric relation:
overlap, inside, left-of, right-of, above, below,
top-left, right-left, bottom-left, right-left,
left-neighbor, right-neighbor, above-neighbor,
below-neighbor, check-variability.
Geometric parameters for describing bounding box and
size of an object: pos-x-1, pos-y-1, pos-x-2, pos-y-2,
size-x, size-y.
Spatial predicates check the geometric parameters, whether
the spatial relations hold: overlap-p, inside-p, etc.

Figure 3. Predefined spatial relations, geometric parameters, and spatial
predicates on geometric parameters for the Scene Interpretation domain. The

x-neighbor relations indicate direct neighbors in the mentioned x
direction.

No. compositional spatial geometric
rel. for A and pi rel. for pi para. for pi

1 original given original
2 original original given
3 given original original
4 given given original
5 given original given
6 original given given
7 given given given

Figure 4. Possible situations for instances of one aggregate A and for
potential parts pi. If not given as constant or reduced, the value is an

unchanged interval or not yet computed relations of the concept (indicated
by original).

balcony) and its parts pi (e.g. a door, a window). Hence, the vari-
ability of a key situation can be described as follows:

Instances A and pi might be or might not be given. If neither A
nor pi are given, A may be constructed from the always given
goal object g. This means, that an instance of a certain concept
is created where all properties are original. If only A is given,
appropriate pi have to be constructed analogously and vice versa.

Concept type of A may be of a taxonomical leaf concept type or a
specializable concept type. A leaf concept cannot be specialized
further, and thus, only the aggregate parts and restrictions have
to be computed. If a specializable concept type is given (e.g. as
a general type like Facade-Object), a more specific type has
to be computed by considering given or possible parts of the ag-
gregate including their restrictions. For example, an instance of
Facade-Object may be specialized to Balcony, if it has an in-
stance of Door as a part.

Concept type of pi is analogous to the above considerations.
Compositional relation between A and pi might be or might not

be given. If such relations are given, the restrictions given by A
have to be checked for pi. If the compositional relations are not
given, they have to be established, if the pi fulfill the restrictions
given in the model of A. If A has further potential parts than pi,
those have to be created (i.e. part hypotheses are created, see [10])
and have to fit the given pi.

Spatial relations between pi might be or might not be given. If they
are given, the geometric parameters have to have values according
to the spatial relations, an appropriate aggregate has to be created
(i.e. an aggregate hypothesis), and the compositional relations of
that aggregate to the pi have to be established. If spatial relations

are not given, they must be computed from the spatial predicates
and geometric parameters.

Geometric parameters of pi and A might be or might not be given.
If given, the appropriate spatial relations can be computed. If they
are not given, geometric parameters can be computed from spatial
relations.

Expecting that the instances with appropriate concept types are
given, Figure 4 shows all other situations. Those are discussed in the
following.

(define-conceptual-constraint
:name Spatial-relation-from-predicate
:structural-situation
((:name ?o1 :type Scene-Object)
(:name ?o2 :type Scene-Object

:relations
((self

#’(aboveNeighbor-p *it* ?o1)))))
:action-part
((ensure-relation

(above-neighbor ?o2 ?o1)
(below-neighbor ?o1 ?o2))))

Figure 5. Generic conceptual constraint for Case 2 and Case 5
(Case-Gen-1). By checking spatial predicates the explicit spatial relations

are established. *it* refers to the value of the relation, in the case of self
to the object bound to ?o2.

Each case has distinct impacts on the configuration process, i.e.
distinct activities have to be performed. In general, in each case the
missing information (in Figure 4 indicated by original) has to be
computed from the fixed or reduced ones (indicated by given). Be-
sides these activities, also the mappings to the representation facil-
ities of the configuration language have to be specified. In the fol-
lowing, for each key situation representations are given as reasoning
chunks.

(define-conceptual-constraint
:name Spatial-relation-from-relation
:structural-situation
((:name ?o1 :type Scene-Object)
(:name ?o2 :type Scene-Object

:relations
((above-neighbor *it* ?o1))))

:action-part
((less (y-pos-2 ?o1) (y-pos-1 ?o2))
(less (x-pos-1 ?o2) (x-pos-1 ?o1))
(greater (x-pos-2 ?o2) (x-pos-2 ?o1))))

Figure 6. Generic conceptual constraint for Case 1 and Case 4
Case-Gen-2. By checking spatial relations the geometric parameters are

computed by numeric constraints.

Case Reduction: From Case 2 to Case 6, and from Case 5 to
Case 7. The mapping of given geometric parameters of pi to
spatial relations can be done with one generic conceptual con-
straint (CC-Gen-1) that holds for all types of parts (see Figure 5).
There, arbitrary Scene-Objects (the super concept of every part
or aggregate) are checked with spatial predicates in the structural
situation and the appropriate spatial relations are established by
ensure-relation in the action part. Because the spatial predi-
cates can handle fixed and reduced values, this mapping is straight
forward. With this conceptual constraint, also Case 2 and Case 5
can be processed as Case 6 and Case 7, respectively.

Case Reduction: From Case 1 to Case 6, and from Case 4 to
Case 7. Similarly Case 1 and Case 4 can be reduced by introduc-
ing one generic conceptual constraint for mapping spatial relations
to geometric parameters (see Figure 6, CC-Gen-2). The condition
matches all pi that are in the modeled spatial relation. The action
part uses numeric constraints to compute the geometric parame-
ters. However, in this case, because the geometric parameters are
original, the mapping only reduces their intervals according to the
spatial relations. This is done internally by constraint actions be-
cause of the underlying mathematics (see Section 2).

10 ECAI 2008 Workshop on Configuration Systems

Case Reduction: From Case 6 to Case 7. The compositional rela-
tion of the parts to an aggregate instance have to be established.
Each aggregate concept has to be checked that might be able to
have parts with the given spatial relations. This can be achieved
by using a conceptual constraint as shown in Figure 7. The struc-
tural situation of such a conceptual constraint describes the spatial
relation which holds between the parts. The action part uses the
create-instance constraint operation, which selects an aggre-
gate concept out of a set of concepts. This set represents all aggre-
gates that may have parts with the given spatial relations. Accord-
ing to the given concepts, one aggregate type As is selected (i.e.
by considering probabilities). A new instance of As is created and
the compositional relations between this new instance and the pi

are established. For every discriminator of an aggregate (in Figure
2 every spatial relation), one conceptual constraint of this kind is
modeled (Case-6-ccs). Thus, this conceptual constraint can handle
all situations where some parts are given which are not yet part of
an aggregate.

(define-conceptual-constraint
:name Entrance-creation
:structural-situation
((:name ?stairs0 :type Stairs

:relations
((part-of #’(free-p *it*))))

(:name ?door1 :type Door
:relations

((part-of #’(free-p *it*))
(above-neighbor ?stairs0))))

:action-part
((create-instance (Entrance Terrace)

(part-of ?stairs0)
(part-of ?door1))))

Figure 7. Conceptual constraints for creating a compositional relation with
a new aggregate (i.e. an example for a Case-6-ccs). The conceptual

constraint matches all stairs and doors that are appropriately related and are
not yet part of an aggregate (indicated by free− p). create-instance
selects one appropriate aggregate (e.g. the most probable one), creates one

instance of that aggregate (e.g. Entrance), and establishes the
compositional relations.

Case 3: Only compositional relations between A and pi are
given. The spatial relations between pi have to be computed from
the given compositional relations. Here the conceptual constraints
(Case-3-ccs) have the following form: The structural situation
checks the compositional relation between the A and pi. The ac-
tion part establishes the spatial relations between the pi. For each
spatial relation of an aggregate one conceptual constraint of the
form illustrated in Figure 8 is created.

Case 7: Compositional relations between A and pi, spatial rela-
tions pj and geometric parameters of pj are given. All concep-
tual constraints match and check the given relations. If the com-
positional relations are fixed for the same parts as the spatial rela-
tions (i.e. if pi = pj) the Case-3-ccs can be used for ensuring the
spatial relations - ensure-relation than only checks the spatial
relations between the parts. CC-Gen-1 computes the geometric pa-
rameters for the pj .
If there exists a pj which is not yet part of A (i.e. its free-p), but
holds the spatial relations of A, the compositional relation can be
established with a further type of conceptual constraint (Case-4-
ccs, see Figure 9). Furthermore, there may be combinations where
one part is already part of A and another is not, e.g. in Figure 9
Stairs may be part of Entrance while Door is not, or vice versa.
For this reason, the predicate free-or-in-agg-p is introduced
that checks, whether an object is part of no aggregate or of the
indicated one (e.g. part of Entrance).

Thus, five different types of reasoning chunks are finally identi-
fied:

(define-conceptual-constraint
:name Entrance-Spatial-relation
:structural-situation
((:name ?e :type Entrance)
(:name ?stairs0 :type Stairs

:relations ((part-of ?e)))
(:name ?door1 :type Door

:relations ((part-of ?e))))
:action-part
((ensure-relation

(above-neighbor ?door1 ?stairs0)
(below-neighbor ?stairs0 ?door1))))

Figure 8. Conceptual constraint for Case 3 (Case-3-ccs).

(define-conceptual-constraint
:name Entrance-Spatial-relation
:structural-situation
((:name ?stairs0 :type Stairs)
(:name ?door1 :type Door

:relations
((aboveNeighbor ?stairs0)))

(:name ?e :type Entrance
:relations

((has-parts
#’(free-or-in-agg-p ?stairs ?doors1 *it*)
#’(check-variability *it*

?stairs0 ?door1)
#’(check-bounding-box *it*

?stairs0 ?door1)))))
:action-part
((ensure-relation

(part-of ?stairs0 ?e)
(has-parts ?e ?stairs0))

(ensure-relation
(part-of ?door1 ?e)
(has-parts ?e ?door1))))

Figure 9. Conceptual constraint for Case 4 (Case-4-ccs). The predicate
free-or-in-agg-p checks, whether the objects are parts of no

aggregate or already part of the aggregate. check-variability and
check-bounding-box are further aggregate restrictions that have to

hold.

1. Mapping between numeric parameters and explicit relations
(quantitative/qualitative mapping). This mapping is done by the
conceptual constraint Case-Gen-1.

2. Mapping between explicit relations and numeric parameters (qual-
itative/quantitative mapping). This mapping is done by the con-
ceptual constraint Case-Gen-2.

3. Creating new aggregates from given discriminative explicit rela-
tions (discriminators). This mapping is done by one conceptual
constraint for each discriminator of an aggregate (Case-6-ccs).

4. Checking if restrictions between parts hold for parts that are ele-
ments of an aggregate. This mapping is done by one conceptual
constraint for each discriminator of an aggregate (Case-3-ccs).

5. Integrating appropriate parts in existing aggregates while consid-
ering aggregate restrictions. This mapping is done by one con-
ceptual constraint for each discriminator of an aggregate (Case-4-
ccs).

5 Experiments in the Scene Interpretation Domain

We tested the previously described representation for the construc-
tion of descriptions of facade scenes. In Figure 10, left, primitive
parts like windows, stairs are shown. These parts are aggregated to
balconies and an entrance (see Figure 10, right). The experiments
further showed that the selection of the domain-dependent predicates
like check-variability and appropriate discriminator (see Figure
2) are very important. If several aggregates of the same type have to
be considered (see Figure 11, right), the identification of the corre-
sponding primitive parts are computed by those predicates.

6 Discussion and Summary

The generic aggregation reasoning chunks presented in this paper
have the following properties:

ECAI 2008 Workshop on Configuration Systems 11

• They distinguish between numeric, quantitative parameters typi-
cally given in databases or sensors, and qualitative relations which
are used in abstract aggregation models.

• They compute all kinds of entities, i.e. aggregates, parts, relations
and parameters depending on the given information.

• They are generic, i.e. they do not depend on the domain used in
the examples, but can be applied to any domain with restricted
aggregates, e.g. also to domains with temporal relations.

Because of the expressive language used in configuration tech-
nologies, domain restrictions with numeric, interval-based con-
straints and n-ary constraints can be used. Also, the configuration
language with concepts and constraints used in our work can be
mapped to similar representation facilities like classes, rules, and
functions of other configuration approaches. Thus, the paper provides
general modeling and representation facilities used for composing re-
stricted aggregates.

Figure 10. Left: Primitive facade objects here provided by annotation.
Right: Constructed aggregates of type entrance and balcony. The

annotated primitives and the automatically created aggregates are
highlighted for presentation reasons.

Figure 11. Further example with primitives and several aggregates of one
type.

ACKNOWLEDGEMENTS
This research has been supported by the European Community under
the grant IST 027113, eTRIMS - eTraining for Interpreting Images
of Man-Made Scenes.

REFERENCES
[1] R. Cunis, A. Günter, I. Syska, H. Peters, and H. Bode, ‘PLAKON -

an Approach to Domain-independent Construction’, in Proc. of Second
Int. Conf. on Industrial and Engineering Applications of AI and Expert
Systems IEA/AIE-89, pp. 866–874, (June 6-9 1989).

[2] A. Günter, Wissensbasiertes Konfigurieren, Infix, St. Augustin, 1995.
[3] A. Günter and L. Hotz, ‘KONWERK - A Domain Independent Config-

uration Tool’, Configuration Papers from the AAAI Workshop, 10–19,
(July 19 1999).

[4] A. Günter and C. Kühn, ‘Knowledge-based Configuration - Survey and
Future Directions’, in XPS-99: Knowledge Based Systems, Proceed-
ings 5th Biannual German Conference on Knowledge Based Systems,
ed., F. Puppe, Springer Lecture Notes in Artificial Intelligence 1570,
Würzburg, (March 3-5 1999).

[5] A. Haag, ‘Sales Configuration in Business Processes’, IEEE Intelligent
Systems, (July/August 1998).

[6] J. Hartz and B. Neumann, ‘Learning a knowledge base of ontological
concepts for high-level scene interpretation’, in International Confer-
ence on Machine Learning and Applications, Cincinnati (Ohio, USA),
(December 2007).

[7] M. Heinrich and E. Jüngst, ‘A Resource-based Paradigm for the Con-
figuring of Technical Systems from Modular Components’, in Proc. of
7th IEEE Conf. on Artificial Intelligence for Applications (CAIA’91),
pp. 257–264, Miami Beach, Florida, USA, (February 24-28 1991).

[8] L. Hotz, ‘Configuring from Observed Parts’, in Configuration Work-
shop, 2006, eds., C. Sinz and A. Haag, Workshop Proceedings ECAI,
Riva del Garda, (2006).

[9] L. Hotz and B. Neumann, ‘SCENIC Interpretation as a Configuration
Task’, Technical Report B-262-05, Fachbereich Informatik, University
of Hamburg, (March 2005).

[10] L. Hotz, K. Wolter, T. Krebs, S. Deelstra, M. Sinnema, J. Nijhuis,
and J. MacGregor, Configuration in Industrial Product Families - The
ConIPF Methodology, IOS Press, Berlin, 2006.

[11] M. Jing and H. Boley, ‘Interpreting SWRL Rules in RDF Graphs’, Elec-
tronic Notes in Theoretical Computer Science, 151, 53–69, (2006).

[12] D. Margo and P. Torasso, ‘Interactive Configuration Capability in a
Sale Support System’, in Proc. of Configuration Workshop, 17th In-
ternational Joint Conference on Artificial Intelligence (IJCAI’01), pp.
57–63, Seattle, USA, (August 2001).

[13] J. McDermott, ‘R1: A Rule-based Configurer of Computer Systems’,
Artificial Intelligence Journal, 19, 39–88, (1982).

[14] S. Mittal and F. Frayman, ‘Towards a Generic Model of Configuration
Tasks’, in Proc. of Eleventh Int. Joint Conf. on AI IJCAI-89, pp. 1395–
1401, Detroit, Michigan, USA, (1989).

[15] S. Pribbenow, ‘What’s a Part? - On Formalizing Part-Whole Relations’,
in Foundations of Computer Science, volume 1337 of Springer Lecture
Notes in Computer Science, pp. 399–406, (1997).

[16] K.C. Ranze, T. Scholz, T. Wagner, A. Günter, O. Herzog, O. Holl-
mann, C. Schlieder, and V. Arlt, ‘A Structure-based Configuration Tool:
Drive Solution Designer DSD’, 14. Conf. Innovative Applications of AI,
(2002).

[17] T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen, ‘Towards a Gen-
eral Ontology of Configuration’, Artificial Intelligence for Engineering
Design, Analysis and Manufacturing (1998), 12, 357–372, (1998).

[18] M. Stumptner, ‘An Overview of Knowledge-based Configuration’, AI
Communications, 10(2), 111–126, (1997).

[19] A. Varzi, ‘Parts, Wholes, and Part-Whole Relations: The Prospects of
Mereotopology’, Data and Knowledge Engineering, 20(3), 259–286,
(1996).

[20] D.L. Waltz, ‘Understanding Scenes with Shadwos’, in The psychology
of computer vision, pp. 19–91, New York, (1975). McGraw-Hill.

[21] P.H. Winston, R. Chaffin, and D. Herrmann, ‘A Taxonomy of Part-
Whole Relations’, Cognitive Science, 11, 417–444, (1987).

[22] B. Yu and H.J. Skovgaard, ‘A Configuration Tool to Increase Product
Competitiveness’, IEEE Intelligent Systems, 13(4), 34–41, (July 1998).

12 ECAI 2008 Workshop on Configuration Systems

A Generative Constraint Model for Optimizing Software
Deployment1

Mihai Nica and Bernhard Peischl and Franz Wotawa2

Abstract. In this article we propose a constraint model for auto-
mated software deployment for embedded automotive systems. Un-
like to specific algorithmic approaches, our purely model-based ap-
proach is applicable in an early system development stage as there is
no need to obtain specific measurements from a prototype. Besides of
this advantage, the constraint model offers unprecedented flexibility:
By taking account of generative constraints, we not solely extend the
application scope of CSPs but provide novel model enhancements
that allow for further optimizations. Notably, the presented model
extension allows for capturing synchronous and asynchronous ECU
tasks and is detailed enough to capture the (optimal) alignment of
function blocks to ECU tasks under presence of rigorous point to
point timing constraints. The article thus further motivates the appli-
cation of CSPs in engineering embedded automotive software.

1 Introduction
Today’s upper class cars contain up to 80 ECUs (Electronic Control
Units), several bus systems, and about 55 percent of all failures are
caused by electronics, software, cables and connectors [1], [2]. More
and more functions in today’s cars involve electronics and software,
80-90 percent of the new innovative features are realized by dis-
tributed embedded systems. Following this mainstream trend, even
highly safety critical mechanical and hydraulic control systems will
be replaced by electronic components.
In recent years, the focus in engineering embedded automotive

systems has been on rather detailed abstractions primarily dealing
with implementation related issues like models for code generation.
Model-based optimization techniques typically take a back seat in
the overall design process since they lack suitable, standardized no-
tations, methodologies, and integration into the model-driven tool
chain.
As today’s embedded automotive software is highly distributed,

the automotive industry devotes increasing efforts to develop tools
for automated software deployment [3]. The underlying foundations
comprise techniques like genetic algorithms and various other clus-
tering techniques [3]. However, to our best knowledge, none of
the current approaches addresses automated software deployment
in terms of a model-based approach. Relying on an algorithmic ap-
proach one has to perform measurements to obtain meaningful met-

1 The research herein is partially conducted within the competence net-
work Softnet Austria (www.soft-net.at) and funded by the Austrian Fed-
eral Ministry of Economics (bm:wa), the province of Styria, the Steirische
Wirtschaftsfrderungsgesellschaft mbH. (SFG), and the city of Vienna in
terms of the center for innovation and technology (ZIT) and by the Aus-
trian Science Fund (FWF) under grant P20199-N15

2 Authors are listed in alphabetical order, Austria, email: {nica,peischl,
wotawa}@ist.tugraz.at

rics for certain parameters as, for example, a reference value for the
bus load. Besides of the provision of a prototype for measurements,
this considerably hampers the seamless integration into the model-
based development paradigm.
In [17] we address the prevalent complexity of automated software

deployment in a resource constrained setting even catering stake-
holders at an early development stage. In this article we extend the
CSP model presented in [17] by incorporating (1) rigorous point-
to-point timing requirements. Moreover, we propose a model en-
hancement for (2) capturing the optimal alignment of function blocks
to synchronous or asynchronous tasks. Notably, as generative con-
straints typically provide even more optimized solutions with rea-
sonable computational effort, (3) we illustrate how to employ this
powerful technique to further optimize our software deployment ap-
proach.
This article is organized as follows. Section 2 briefly introduces

CSPs and, in particular, generative constraints. Afterwards, in Sec-
tion 3, we briefly introduce the problem of automated software de-
ployment on a conceptual level and present a general CSP model
capable of handling resource -, quality-, cost-, and timing constraints
in Section 4. In this section we also outline how to deal with point-to-
point timing constraints and address the alignment of function blocks
to specific (asynchronous as well as synchronous) tasks. Notably we
exploit the powerful mechanism of generative constraints to achieve
an optimal solution. Section 5 discusses related work and finally con-
cludes this article.

2 Constraint Satisfaction Problems

Constraints systems are a natural and straightforward way of describ-
ing specifications and requirements for hardware and software sys-
tems. A Constraint Satisfaction Problem (CSP), (V, D, CO), is char-
acterized by a set of variables V = (v1, ..., vn), each variable having
a domain D, and a set of constraints CO = (c1, ..ck) which defines
a relation R between variables. The variables in a relation R ∈ CO
are called the scope SR of the relation. There are very effective rea-
soning algorithms available for CSP, e.g., for computing solutions.
A solution of a CSP is an assignment of values to the CSP’s vari-
ables which does not contradict any given constraint. State of the art
constraints solver are available for solving CSPs. More information
about CSPs can be found in Rina Dechter’s book on constraints [5].
Due to complex specifications, it is possible for the CSP associated

to a given problem to find itself in an inconsistent state. We say that a
CSP, (V, D, CO), is in an inconsistent state, if for its corresponding
variables set V = (v1, ..., vn), there exists no valid initialization set
from the domain D such that all the constraints from the constraints
setCO = (c1, ..ck) are simultaneously fulfilled. A CSP is consistent

ECAI 2008 Workshop on Configuration Systems 13

when there exists at least one valid initialization of the variables set V
such that all constraints from the setCO are simultaneously fulfilled.
Inconsistencies can be overcome by relaxing the constraints sys-

tem. Within our algorithm there are two possible situations when the
CSP can find itself in an inconsistent state:

1. Resource Constraints Inconsistency.This type of inconsistency
can originate from two situations. The first situation is when at-
tempting to deploy a cluster on an ECU which dose not pro-
vide enough resources for a safe execution of the function blocks.
By means of a generative approach, we identify thous resources
that lead to the inconsistent state and safely generate a new type
of ECU that overcomes thous problems. The second situation is
when, after computing all possible combination of deploying the
function blocks, we cannot satisfy the required level of bus load.
This situation can not be directly overcome by our algorithm, and
leaves the decision of what is better to do, to the developer.

2. Price Constraints Inconsistency.This inconsistency appears when
the desired all-around cost of the system can not be accomplished
when trying to fulfill all of the quality requirements. Again the
decision of eliminating the inconsistency lies within the responsi-
bility of the developers.

Sometimes we want to extend the system’s functionalities or in-
sert new components into it. In order to do that we need to expand
the current consistent CSP configuration. We do this by means of
generative constraints. However,the CSP can now find itself in an in-
consistent state. This is why after each modification undertaken to a
consistent CSP, a consistency check has to be performed.
The consistency check mechanism verifies if a given CSP is in

an inconsistent state. There are several consistency check algorithms
that can be successfully applied. The most popular of them are arc-
consistency, path consistency and n-consistency check. A description
of these algorithms is found in [5]. An optimized algorithm for con-
sistency check is the Max-Restricted Path Consistency algorithm [9].

2.1 Generative Constraints
The definition of a generative constraints system is given in [16]. The
paper states that a generative constraint satisfaction problem is a tu-
ple GCSP (X0, Γ, T, Δ0) whereX0 is the initial variable set, Γ the
set of generative constraints, T the set of variables types andΔ0 is a
relation that has the property that each of her tuples (x, (t, i)) asso-
ciate a variable x from the set of variables to its type t and to a unique
identifier that indicates that x is the i-th variable of type t [16] states
that a generic constraint is a constraint over meta variables, where
the meta variables are replaced, after the preprocessing step is over,
with concrete variables having the same type as the meta variables. A
meta variableMi of type t is a place-holder for all concrete variables
of type t.

3 Problem Statement
By partitioning we understand the process of dividing a set of func-
tion blocks into groups of subsets of function blocks. Each group of
function blocks is executed on an available control unit (CU). We
denote such a group as cluster. By function block we understand a
specific task that has to be executed by the system such that a cer-
tain required functionality can be provided. For example the signal-
ing function of a car can be abstractly seen as a 3-tasks set: switch
on the signal-commutator, signaling an interrupt to the signal-light
controller and switching on the signaling light.

The function blocks deployed on a control unit exchange informa-
tions with the function blocks from other control units by means of
the main data bus. How the function blocks are partitioned into clus-
ters is decisive for the performance of the entire system. A data-bus
load of more than 70% is already critical and its an indicator for a bad
partioning schema. Several algorithms were proposed for computing
the partitioning schema of a set of function blocks [4].
We propose a partitioning algorithm based on the CSP represen-

tation of the system requirements and on the quality specifications.
Moreover we use generative constraints in order to expand our initial
CSP such that it can incorporate each new added component.
In order to build the CSP we need to define the system’s param-

eters. We configure the software deployment strategy for an auto-
motive system. Within the automotive industry an electronic control
unit (ECU) is the computational part on which the software functions
associated to different requirements of the system, e.g. DVD-play,
ABS, torque vectoring, or control of the attitude angle, are executed.
The problem of partitioning into clusters is equivalent to the problem
of assigning each ECU a set of function blocks that are periodically
executed on it.
In order to exchange data, the function blocks have to communi-

cate with each other. We can see the set of the function blocks as a
network where the nodes are the functions. Each connection that is
established between two function blocks has associated an weight.
This denotes the communication frequency between the connected
functions. One criteria of the partitioning algorithm is taking into ac-
count this weights. It is recommended to group together thous func-
tion blocks that communicate very often.

4 A Constraint Model for Software Deployment

The system’s final CSP represents a union of three categories of con-
straints:

1. Resource Constraints: The resources of the CU, on which the clus-
ter is executed, give us the resource constraints system. The mem-
ory of the CU and the processing power, are criteria which impose
restrictions on the clusters that can be executed on the given CU.

2. Quality Constraints: Using quality functions we define the quality
constraints. They assure that the system will behave within the
given quality criteria. For example a quality criteria is a bus load
that is always under 40%.

3. Cost Constraints: The cost constraints are given by the implemen-
tation’s cost of the CUs. There can be more types of CUs with
different properties and different implementation costs. It is pos-
sible that although a certain CU is expensive to implement it offers
an all around smaller cost than when using 10 CUs that perform
the same task. An optimal cost is hard to achieve. These type of
constraints are strongly connected with an arbitrary parameter that
we call desired general cost (DGC).We define the cost constraints
such that they always assure that the ’all around system’s costs’ is
smaller than the DGC. We also try to have the costs as low as
possible without cutting off the system’s performance.

4. Time Constraints: Within an automotive system each software
functionality has to be executed within an amount of time. It will
be a catastrophe if the braking function would take 30s to execute.
When partitioning function blocks into clusters this criteria must
also be considered with respect to the ECU on which the deploy-
ment is made.

We use the following set of definitions:

14 ECAI 2008 Workshop on Configuration Systems

Definition 1 (Function Block) Any function block (of t function
blocks) is associated with a unique identifier fi, its processing re-
quirements pow(fi), the memory requirements mem(fi), and the
worst case execution time wtc(fi) .

Definition 2 (ECU) Every Electronic Control Unit ECUi is associ-
ated with a processing capacitymaxECUpowi .

Definition 3 (Bus System) Every bus system B is associated with a
worst case execution time. We assume a function twc(B) returning
the worst case execution time given a bus system B.

Definition 4 (Point-to-Point Requirement) Any temporal require-
ment Req(i,j) specifies the maximal execution time that is allowed
between the source i and the sink j.

Definition 5 (Gateway) A gateway G connects two different bus
systems. For the underlying conversion process we assume a worst
case execution time. Given an gateway G, a function twc(G) returns
this worst case execution time.

4.1 Resource Constraints
We start building the resource constraints system.

1. The overall memory consumption of the function blocks is smaller
or equal to the available memory. Usually not all function blocks
are executed in the same time, but in the worst case scenario, this
trivial safety constraint assures us that no jamming occurs in the
function execution process.∑

i mem(fi) ≤ ∑
j maxECUmemj

2. An adjacent memory constraint is the maximal function block
memory constraint. That is, let fmax be a function block such
that the memory requirement of fmax, memfmax , is the max-
imum from all function’s memory requirements. There exist an
ECU, ECUk ∈ ECU , with the available memory memk, such
thatmemk ≥ memfmax .

3. After we decide to deploy a cluster of functions,
Cj = {fi...fi+n},i ≥ 1, on an ECU, ECUj , then ECUj

must provide enough memory and processing power to host the
deployed functional blocks. The function deploy(ECUj) returns
the indices of the function blocks deployed on ECUj .∑

i∈deploy(ECUj)(mem(fi) ≤ maxECUmemj) ∧∑
i∈deploy(ECUj)(pow(fi) ≤ maxECUpowj

)

4. A function block is deployed on a single ECU only.
∀i, j ∈ {1..n}, i �= j · deploy(ECUj) ∩ deploy(ECUi) = ∅

5. Any function deploy that distributes all functional blocks fi on
max ECUs is a solution.
{1..n} =

⋃max
j=1 deploy(ECUj)

By unifying the above constraints system we derive the resource
constraints system (RCS):

RCS :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.
∑

i mem(fi) ≤
∑

j maxECUmemj ;
2.∃fi|fi ∈ F, i ∈ [1, t] ,∀j ∈ [1, t] ,

i �= j, memfi ≥ memfj

⇒ ∃ECUl ∈ ECU, l ∈ [1, k] :
mem(ECUl) ≥ memfi ;

3.
∑

i∈deploy(ECUj)(mem(fi) ≤ maxECUmemj)∧∑
i∈deploy(ECUj)(pow(fi) ≤ maxECUpowj

);

4.∀i, j ∈ {1..n}, i �= j, deploy(ECUj)
∩deploy(ECUi) = ∅;

5.{1..n} =
⋃max

j=1 deploy(ECUj);

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

4.2 Timing Constraints
Regarding the timing requirements, for sake of simplicity, we
assume that there is only a single path from the source x to the sink y
and that there are no loops in the network. Under these assumptions
the point-to-point timing requirements map to a constraint model as
follows.

1. txy ≤ ∑
i twc(fi) + twc(Bi) + twc(Gi).

For every timing requirement Req(a,b) we instantiate these con-
straints.
A system’s software functionality is divided in a finite number of

tasks (software blocks) that have to be sequentially executed. Each
ECU executes in one execution cycle a number of tasks. This tasks
are not necessarily part of the same software functionality and have
to be periodically executed. Each software functionality has to be
executed within a certain prior known time. Because of that, time
requirements with regard to the task execution are enforced. From
this we extract the time constraints system (TCS) of the system.
Given a software functionality SF consisting of a sequential

set of tasks T = {t1, ..., tk} and a required maximum execution
time Tmax. Then if function time(ti) with i ∈ {1, .., k}, returns
the time necessary to execute task ti on the assigned ECU then∑

i

time(ti) ≤ Tmax. This constraint is verified after all tasks ti

of the software functionality SF are deployed.
Within an ECU, each task as an assigned execution time within the

execution cycle. It possible that a task is completely executed after
more execution cycles. For example, if for a task ti we need 4 ms, but
the execution slice for this task is of 1s, we need 4 execution cycles
in order to complete the task. If one cycle takes 10ms to complete,
then, if the task is programed to be executed first on the execution
cycle, we need 31s in order to execute it. This can lead to a viola-
tion of the global time assigned for the software functionality which
includes this task. We have to be careful not to neglect this possible
inconsistency. Let tECUi be the time that a ECU needs in order to
execute a task ti, then tECUi ≤ time(ti).
An asynchronous task of a software functionality is not programed

to be periodically executed and is triggered by special events from
the outside world. Each ECU has in its execution cycle a slice that
is specially assign to this type of tasks. The slice has a fixed amount
of time in which it can execute the asserted task. The possible asyn-
chronous tasks are known for each type of software functionalities,
e.g for braking we have as possible asynchronous task the ABS func-
tionality; triggered only in special cases. The asynchronous tasks are
also included in the partitioning process. The constraints associated
to this type of tasks are the same as in the case of synchronous tasks.

4.3 Quality Constraints
The quality constraints system are the most important factor when
we partition the function blocks into clusters. In order to build these
constraints system we use a set of functions, named quality functions.
The quality functions offer us a metric for computing the optimal
partitioning of the function blocks. The constraints are created by
imposing output values that these functions should not exceed for
a given cluster. The constraints solver tries to find a set of function
blocks such that all the quality constraints are fulfilled. When it finds
such a set it creates the cluster.
Besides, as an extra quality constraint, we try to keep the output

values of the quality functions to a level close to optimal(such that the

ECAI 2008 Workshop on Configuration Systems 15

cost are minimal). Each quality function receives as input parameter
the CF set. How this set is build depends on the user and on the
described system. There are more solutions proposed for building
this set; one, given in [4], proposes a representation of the CF set by
means of a geometrical matrix. It is beyond the scope of this paper
to discuss how the CF is created. We presume that the set is already
given and use it directly as input for the quality functions.
We build the quality constraints system based on the quality func-

tions set. We use the quality functions presented in [4].
We define the following:

Definition 6 (Cluster’s external cost) It represents the frequency
with which the function blocks within a cluster Ci,i ∈
[1, c],communicate with the rest of the function blocks from the net-
work. We denote this metric trough Ei and we compute it as the av-
erage CF between the function blocks within the cluster and the ex-
ternal function blocks.

Definition 7 (Cluster’s internal costs) It represents the frequency
with which the function blocks communicate with each other within
a given cluster Ci,i ∈ [1, c]. We denote this metric by Ii and it rep-
resents the average of all CF within the cluster Ci.

Definition 8 (Cluster’s diameter) It represents, based on the CF
of the function blocks, the average distance between the function
within a given cluster Ci,i ∈ [1, c]. We denote this metric through
diamCi.

Definition 9 (Distance between Clusters) It represents, based on
the CF of the function blocks, the average distance between a clus-
ter Ci and a cluster Cj ,i, j ∈ [1, c], i �= j. We denote this metric by
d(Ci, Cj).

Definition 10 (External costs between clusters) It represents,
based on the CF of the function blocks, the external cost between a
cluster Ci and the function blocks of a cluster Cj ,i, j ∈ [1, c], i �= j.
We denote this metric by E(Ci, Cj).

Definition 11 (Cluster’s Nodes) It represents the number of func-
tion blocks within a cluster Ci,i ∈ [1, c]. We denote this metric by
Ni.

The quality functions are defined below. Detailed informations
about these functions can be found in [4].

1. The External-Internal Ratio is a ratio between the external and
the internal costs must be as low as possible. That is, a good clus-
ter is a cluster which communicates as little as possible with the
other function blocks from the network and that has the internal
communication frequency as high as possible. We define for every
cluster a communication ratio limit, CRLmax, which represents
the qualitative limit that every cluster must respect.
∀Ci, i ∈ [1, c] Ei

Ii
≤ CRLmax

2. The Davies Bouldin Criteria shows a good partitioning when the
factor is as low as possible. The Davies Bouldin (DB) factor is
computed only after all the cluster are formed. We set a limit,
DBmax that should never be surpass by the final cluster parti-
tioning. After computing all the clusters c, we compute the DB
factor. If it is greater than DBmax then the constraint is violated
and a new partitioning of the function blocks is performed. If the
constraint holds a valid configuration with respect to the DB fac-
tor was found.

DB = 1
c

c∑
i=1

maxj �=i

[
diam(Ci) + diam(Cj)

d(Ci, Cj)

]

3. TheModularization Factor (MF) is an indicator of a compact clus-
tering of the function’s blocks. The value of this factor should be
as high as possible. For our constraints system we settle a minimal
value,MFmin,below which the optimality criteria is violated. If,
after computing the all clusters, we observe that the value of MF
is smaller thanMFmin, then the constraint is violated and we dis-
card the partitioning. If the value of MF is greater than MFmin

then we found a valid solution.

MF =

∑
i

Ii

∑
i

Ni(Ni − 1)

2

−

∑
i<j

E(Ci, Cj)

∑
i<j

NiNj

4. The SILHOUETTE factor (Sh) verifies the correctness of the dis-
tribution of a function fi within a cluster Ci with respect to a
neighbor node Cj . The domain of the Sh value of the function fi

is [−1, 1]. A good distribution of the functions fi within a cluster
Ci, has the Sh value in the vicinity of 1. For every function fi, we
compute Sh(fi). If this value diverges with more than δmax from
1 then the constraint is violated, the function is not distributed
within cluster Ci and we start the search for a new cluster.
Sh(fi) =

d(fi,Cj)−d(fi,Ci)

max(d(fi,Cj),d(fi,Ci))

5. The Cluster Load Deviation (CLD) is computed after all the clus-
ters c are created. Small values of this function denote a good
partitioning of the function blocks. In a good case scenario all the
clusters have a similar number of function blocks within them. We
have the following constraint: the final CLD value of the network
must not be greater than an optimal criteriaCLDmax. If the CLD
of the network is greater than CLDmax the partitioning of the
function blocks is discarded and we restart the partitioning pro-
cess. If the value of CLD is smaller than CLDmax then we have
found a valid partitioning.

CLD =

√√√√ 1
c−1

c∑
i=1

(Ni − N̄)2 , N̄ = 1
c

c∑
i=1

Ni

By combining the above criteria we build the Quality Constraints
System (QCS). The CRLmax, DBmax, MFmin, δmax and the
CLDmax must be given by the user with respect to the desired sys-
tem performances.

QCS :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.∀Ci, i ∈ [1, c] Ei
Ii

≤ CRLmax;

2.DB = 1
c

c∑
i=1

maxj �=i

[
diam(Ci) + diam(Cj)

d(Ci, Cj)

]
∧

(DB ≤ DBmax)

3.MF =

∑
i

Ii

∑
i

Ni(Ni − 1)

2

−

∑
i<j

E(Ci, Cj)

∑
i<j

NiNj

∧

(MF ≥ MFmin);

4.Sh(fi) =
d(fi,Cj)−d(fi,Ci)

max(d(fi,Cj),d(fi,Ci))
∧

((1 − Sh(fi)) ≤ δmax);

5.CLD =

√√√√ 1
c−1

c∑
i=1

(Ni − N̄)2∧

(CLD ≤ CLDmax);

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

4.4 Cost Constraints
The Cost Constraints System (CCS) is build based on the system’s
cost criteria. Each ECU has a price and a performance description
associated to it. We use the following constraints in order to build the
CCS.

16 ECAI 2008 Workshop on Configuration Systems

1. The Price Constraint. Given a network of function blocks F , a
set of ECUs and a desired general cost DGC, then we have to
distribute all the function set F over a number NE of ECUs such
that the total cost of these ECUs, PNE is smaller than DGC

2. The Bus Load Constraint (BLD) of the system must be lower than
an imposed value,BLDmax. That is, we have to choose the ECUs
on which we distribute the function blocks, such that the bus load
of the system is never greater as the imposed value BLDmax.

By unifying the RCS with the QCS with the CCS and the TCS we
derive the CSP associated to the system:
CSP = RCS ∪ QCS ∪ CCS ∪ TCS.
Combining this four types of constraints restricts the possible set

of configurations to an optimal solution.

4.5 Generative Deployment of Clusters
When the partitioning process is finished we start to deploy the clus-
ters on the available ECUs. We use the generative constraints in order
to choose the best available ECU that suits the requirements of the
cluster.
We have different types of ECUs on which we must assign the

clusters. We select the cluster that we want to deploy.The require-
ments of this cluster are generated by means of the generative con-
straints, e.g. memory, processing power, time to compute the as-
signed tasks. We choose from the set of ECUs the cheapest ECU and
try to deploy the cluster. If, after replacing the meta variables with the
concrete variables, an inconsistency happens between the resource
provided by the ECU and the requirements of the cluster, we drop
the selected type of ECU and chose another one. If the memory was
not sufficient then we choose another type of ECU that provides the
same processing power but enough extra memory to accommodate
the requirements. We repeat this technique until all clusters are de-
ployed. The case when a cluster can not be deployed, because there
is no type of ECU to accommodate it, is eliminated in the cluster’s
building process. When generating clusters we generate them such
that no cluster’s requirements exceed the maximal resource capacity
provided by the best type of ECU.
Using this technique we avoid searching for a best fit ECU. In-

stead of performing a (expensive) number of comparisons each time
a cluster is deployed on a specific ECU. By means of generative con-
straints we focus exactly on the needed ECU.We do that by using the
nogoods provided by the consistency checker. This obviously saves
time and computational power.

5 Related Work and Conclusion
Constraints are a natural way of representing problems. They are of-
ten used in the area of configuration and reconfiguration of system.
We use this straightforward and natural way of representing infor-
mation and by means of a CSP solver we compute a valid solution
which satisfies all the CSP criteria. Because of this approach, we do
not have to generate all the cluster combinations but just wait for the
first n; n ≥ 1 solutions that the CSP solver delivers. Choosing a
constraints solver proves to be a hard task to fulfill. As future work
we also want to do an in depth comparison of the constraints solvers
available on the market. Representing the partitioning problem as a
CSP problem is a good extension to any other clustering algorithm.
CSPs are also successfully applied in the area of configuration and
reconfiguration of large software systems over a network, e.g. CAW-
ICOMS which is presented in [15]. Other application areas for CSP
representation are large business tasks planning.

This article proposes a constraint model for automated software
deployment in embedded automotive systems. Unlike to specific al-
gorithmic approaches, our purely model-based approach is applica-
ble in an early stage of system development as there is no need for
reference measurements on a prototypical implementation.
The idea behind our proposal is to use this algorithm in the early

stages of the development. In order to fully optimize the solution
we directly apply the generative deployment strategy on the given
model. Hence we propose this algorithm as a methodology for de-
ploying software components within an early state of the system’s
development.
Our novel CSP model notably extends previous models by incor-

porating (1) rigorous point-to-point timing requirements, (2) captures
the optimal alignment of function blocks to synchronous as well as
asynchronous ECU tasks by (3) relying the powerful technique of
generative constraints. In terms of a simplified example, our article
captures the critical issues in automating software deployment and
thus further extends the practical application scope of (generative)
CSPs.

REFERENCES
[1] Henrich Druck & Medien GmbH Challenges for the automotive supply

chain,
Association of German Car Manufacturers (VDA) HAWK2015, Frank-
furt am Main, 2003.

[2] E. Schoitsch Design for Safety AND Security of Complex Embedded
Systems: A Unified Approach, NATO Advanced Research Workshops,
Cyberspace Security and Defense: Research Issues, p. 161-174, Springer
Dordrecht, Berlin, Heidelberg, New York.

[3] R. Henia, A. Hamann, M. Jersak, Razvan Racu, Kai Richter, Rolf Ernst
System Level Performance Analysis - the SymTA/S Approach IEE Pro-
ceedings Computers and Digital Techniques, 152(2):148–166, March
2005

[4] S. Brummund, N. Kehl, P. Nenninger and U. Kiencke ISODATACluster-
ing for Optimized Software Allocation in Distributed Automotive Elec-
tronic Systems SAE World Congress & Exhibition,Detroit, MI, USA,
Session: In-Vehicle Networks , 2006 .

[5] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[6] Georg Gottlob, Nicola Leone, and Francesco Scarcello. On Tractable

Queries and Constraints. In Proc. 12th International Conference on
Database and Expert Systems Applications DEXA 2001, Florence, Italy,
1999.

[7] G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP
decomposition methods. Artificial Intelligence, 124(2):243–282, 2000.

[8] M. Yannakakis. Algorithms for acyclic database schemes. In C. Zaniolo
and C. Delobel (Eds.), Proc. of the International Conference on Very
Large Data Bases (VLDB-81), Cannes, pp. 82-94, 1981.

[9] R. Debruyne and C. Bessiere From Restricted Path Consistency to Max-
Restricted Path Consistency SPrinciples and Practice of Constraint Pro-
grammingBerlin/Heidelberg ,pp. 312-326, 1997.

[10] D.Benavides, S. Segura, P. Trinidad and A. Ruiz-Cortes Using Java CSP
Solvers in the Automated Analyses of the Feature Models GTTSE,Braga,
Portugal, pp. 399-408, 2006.

[11] I. P. Gent, C. Jefferson and I. Miguel Minion: A Fast, Scalable, Con-
straints SolverECAI Riva del Garda, Italy, 2006.

[12] M. Stumptner and F. Wotawa. Coupling CSP decomposition methods
and diagnosis algorithms for tree-structured systems. In Proc. 18th In-
ternational Joint Conf. on Artificial Intelligence, pages 388–393, Aca-
pulco, Mexico, 2003.

[13] F. Laburthe and N. Jussien CHOCO constraint programming system,
http://choco.sourceforge.net, 2003-2006

[14] K. Kuchcinski Constraints-driven scheduling and resource assignment,
ACM Transaction on Desgin Atumation of Electronic Systems (TODAES)
,8(3):355-383,July 2003

[15] L. Ardissono, A. Felfernig, G. Friedrich,D. Jannach, R. Schafer, M.
Zanker A Framework for Rapid Development of Advanced Web-based
Configurator Applications, AI Magazine , 24(3), 93-110, (2003).

[16] A. Felfernig, G. Friedrich, D. Jannach, M. Silaghi, and M. Zanker, Dis-
tributed Generative CSP Approach towards multi-site product configura-

ECAI 2008 Workshop on Configuration Systems 17

tion, Workshop on Immediate Applications of Constraint Programming
(ACP),Cork, Ireland, 2003,100- 123

[17] Mihai Nica, Bernhard Peischl and Franz Wotawa, A Constraint Model
for Automated Deployment of Automotive Control Software, Proceed-
ings of The 20th International Conference on Software Engineering and
Knowledge Engineering, Redwood City, San Francisco Bay, USA,2008.

18 ECAI 2008 Workshop on Configuration Systems

A CSP based Distributed Product Configuration
System

extended abstract

Fernando Eizaguirre and Martín Zangitu and
Josune de Sosa and Karmele Intxausti1

1 Ikerlan Technological Research Centre, Spain, email: feizaguirre@ikerlan.es

Abstract. This paper presents the current state of an ongoing
research project aiming at developing a distributed configuration
system for products structured as a hierarchy of nodes/subnodes
distributed across internet. Each node maintains its own part of the
product with its own parameters and constraints. The
configuration problem is modelled as a distributed constraint
satisfaction problem, CSP. As the user interacts with the
configurator, the system allows selecting or unselecting product
features, filtering out no longer consistent values and showing
minimum and maximum cost of the product being configured. The
paper describes the distributed CSP techniques used and gives a
brief overview of the software prototype developed.

1 DISTRIBUTED PRODUCT
CONFIGURATION

A distributed product can be described as a hierarchy of nodes and
subnodes. Typically subnodes represent suppliers of components
or parts of the product. In turn, each supplier can have its own
second level suppliers, and so on. Therefore the product is
distributed as a tree of nodes as it is shown in Figure 1. This
example, representing the case of an elevator, has been used to test
the system described in this paper.

Figure 1. Distributed Product as a Node / SubNodes hierarchy.

Each node (i.e. a supplier) in the hierarchy exposes the
parameters to configure its component so that any other node,

higher in the hierarchy, can include the component parameters in
its model; however, the constraints that restrict the valid
combinations of the parameters defining the component are only
known by the node and cannot be transmitted into a central node.
In fact these constraints can be viewed as the private know-how of
the company. Therefore, it is not possible to transmit all
parameters and constraints into a central node to solve the problem
with centralised CSP techniques

Each node in this network of configurators can play the role of
being part of another product and, at the same time, can be itself a
product. Therefore, the whole distributed configuration system can
be seen as a hierarchy of distributed configurators in which each
configurator can play the role of both a server (for client
configurators higher in the hierarchy or even for human clients)
and the role of a client (for configuration servers lower in the
hierarchy). The whole network of configurators follows a
client/server paradigm.

2 REQUIREMENTS OF A CONFIGURATOR

Requirements of configurators have been thoroughly identified
and analysed in the literature and can be studied from different
points of view. In [1] requirements are identified and discussed
about the need of common knowledge representation among
nodes, the management and maintenance of the product model, the
need of adaptable and dynamic generated interfaces for users of
different skill levels, distributed reasoning, etc. In [2] the authors
describe a framework for the management of personalised
configuration in business oriented domains that allows the system
to dynamically generate personalised user interfaces. In [3]
requirements as consistency, completeness, optimality and
solution finding are discussed. In the research project described in
this paper, due to limited scope and funding of the project, the
authors focus its interest just in the distributed reasoning aspects.
Apart from base requirements, such as consistency and automatic
completion of solutions, the project focuses also in developing
algorithms to satisfy the following requirements:

• Selection of inconsistent values (correction of previous
decisions) – As the user interacts with the configurator, in
some situations, the user may decide that he wants to select
a given value marked as inconsistent by the configurator as a

ECAI 2008 Workshop on Configuration Systems 19

result of previous decision. In this case, the configurator
should be able to propose to the user a list of previous
decisions that should be changed so that the current
inconsistent value he wants to select be consistent and
eligible.

• Minimum and Maximum cost - After each interaction of
the user, the configurator must calculate (in background) the
solution with the minimum cost and the solution with the
maximum cost compatibles with choices so far.

• Real Time - The above mentioned requirements must be
satisfied in real-time (few seconds for human client).

3 REVIEW OF DISTRIBUTED ALGORITHMS

In recent years algorithms for distributed CSP have been proposed
(see [4], [5]). Almost all the algorithms are based on a set of
agents that cooperate to find a global solution. Algorithms can be
basically classified along two axes: (a) number of variables
managed by each agent and (b) synchronous / asynchronous
communication among agents.

Most of the algorithms proposed in the literature, are based on
agents that manage just one variable and therefore are not suitable
for a model in which each node manages a set of variables and not
just one variable. Obviously each node could be implemented a set
of agents managing just one variable, but this implementation
would not be efficient. In addition to this, these algorithms are
designed to manage binary constraints, but unfortunately, in
configuration problems, n-ary constraints are much more frequent.

In the project CAWICOMS (see [1], [6]) a hierarchy of
configurators working in a client/server mode is developed in
which each configurator manages its own set of variables and
constraints. One of the algorithms developed in this project, a
synchronous configuration of subassemblies is based in an
extension of the forward checking mechanism (invoking
synchronously subnodes to check/complete a partial solution to
the subassembly when necessary) and is transparent to the search
algorithm.

3.1 Synchronous Versus Asynchronous
Many of the distributed algorithms are based on an asynchronous
communication allowing agents to work in parallel. To guarantee
a global consistency (depending on the algorithm) each agent
maintains a list of the unsuccessful partial solutions tried so far
(list of nogoods) to keep track of solutions that are not globally
consistent, avoiding repeating unsuccessful assignations. The idea
behind asynchronous algorithms is that agents work in parallel so
that efficiency is increased.

Unfortunately, as it is noted in [7], many of the studies about
asynchronous algorithms have assumed instantaneous messages or
have underestimated the impact of message delays. In a realistic
scenario communication delays are not negligible at all, in fact in
the time needed to propagate a message, a given agent node can
do a lot of work in its local constraint network. This means that
agents, most of the time, work with inconsistent information
wasting the theoretical advantage over synchronous algorithms.

The paper [7] shows an improved version of a simple
synchronous backtracking (with backjumping) and concludes that,
with message delays, it performs equally well as asynchronous

search algorithms in terms of computational effort. In addition to
this, the paper also concludes that the synchronous backtracking
loads the network with only one message at a certain time and its
performance is stable for a variety of communication qualities.

In [8] the same authors present an interesting asynchronous
algorithm in which multiple and dynamically created search
process work in parallel in non intersecting parts of the problem.
Each individual search process is a synchronous search algorithm
working in its own part of the domain problem. This is a very
interesting idea that couples the advantage of synchronous
algorithms (robust with message delays) and asynchronous
algorithms (all agents working in parallel avoiding idle agents).

3.2 Constraint Compilation
There exist approaches to configuration oriented to ensuring
global consistency in real-time (one the key requirements of a
configurator), for example, such as those based on compilation of
constraint networks (see [11]). Moreover, there are commercial
companies selling configurators based on compilation of
constraints (see [12] and [13]). However these techniques are not
oriented to distributed problems and are not well suited to
changing conditions of supply-chain networks. In addition to this,
consistency of cost variables (maintaining minimum and
maximum cost of the product as it is configured), has a high
impact in these techniques that may become not viable.

4 DISTRIBUTED CSP MODEL ADOPTED

This section describes the distributed CSP model adopted in the
project. As shown in Figure 2, each node in the hierarchy holds its
own constraints network with its own variables and constraints
representing the product/component/part sold by the company.

Figure 2. Public variables exposed by each node.

A subset of the variables of the local CSP of each node,

represent the configuration parameters of the component/part. This
set of variables is public and can be accessed by other nodes
higher in the hierarchy.

Consistency among nodes and subnodes follows a similar
approach to the one described in [6] and is basically an extended
version of a forward checking (that implements a synchronous
forward checking to the subnodes) and is transparent for the
search algorithms. In the father node, consistency between the
public variables of a given subnode and the corresponding
variables in the father node (see Figure 3) is kept by a “remote
equality constraint” that keeps these variables arc-consistent

20 ECAI 2008 Workshop on Configuration Systems

Figure 3. Links between CSPs of Nodes and SubNodes.

This constraint (that implements an AC-4 consistency, see
[10]) works as follows:

• Whenever the domain of any of the imported variables in the
father node changes, the constraint is invoked. The
constraint collects the current state of the domains of the
imported variables in the father node and sends these
domains to the configurator of the subnode for checking
consistency. The calling configurator, the father node, waits
synchronously for the subnode’s reply.

• When the subnode’s configurator receives the request, it
checks with its local constraint network if the domains
received in the request are consistent, pruning domains until
they are arc-consistent. If any of the domains is empty, the
subnode’s configurator answers back with a message asking
for backtracking. Otherwise, the subnode’s configurator
answers back with a message containing the new filtered and
arc consistent domains. After answering to the request, the
subnode’s configurator remains waiting for new requests.

• When the calling constraint in the father node receives the
answer with the new arc-consistent domains, immediately
applies the domains to the imported variables and the search
process continues.

For the communication mechanism, two alternatives were

tested for implementation, the use of XML over SOAP, as in
CAWICOMS project, and the use of Sockets over TCP/IP. The
former is a secure communication mechanism but unfortunately,
even in a local network, it performed quite slow for the extended
forward checking implemented in this system (in fact XML over
SOAP can achieve just a few transactions per second). The latter,
sockets over TCP/IP, has some security concerns (server needs an
open port and firewalls must be configured to not blocking
connections) but is very fast. In a local area network, inside a
company, a socket can perform thousands of transactions per
second. Within a virtual private network with an optical fiber,
sockets can perform several hundreds of transactions per second.
However security concerns and firewalls are issues to be solved.

5 SEARCH ALGORITHMS

The distributed CSP model just described and the search
algorithms are implemented on top of SICStus Prolog clpFD ©
(see [9] for details). Algorithms (implemented on top of the
labeling predicate of SICStus for which the extended forward
checking works transparently) are basically a synchronous
backtracking with some improvements to minimize the network
load. These algorithms have been tested with the example of the
elevator, that is a small size model with 7 nodes, and about 5
variables per node (apart from imported variables from subnodes)
with a domain size about 10 values per variable, and about 15
simple constraints per node.

Consistency will not be discussed here because it is considered
that arc-consistency level, provided by the SICStus clpFD engine,
is a sufficient condition for an acceptable configurator, even if it
does not guarantee that all the values of the current domains of the
variables are part of a global valid solution (the cost of ensuring
that condition would be prohibitive because in fact it is equivalent
to find one solution for each possible value of all variables, unless
constraint compilation techniques were used, not the case here). In
practice, it is the opinion of the authors that arc-consistency may
be sufficient for most of users.

Regarding, automatic completion of solutions, it is
implemented by using labeling algorithm of SICStus and simply
consists in finding the first valid solution compatible with choices
made so far.

5.1 Selection of inconsistent values
As the user interacts with the configurator making decisions
(selecting or eliminating values of variables) the arc-consistency
process may eliminate values of other variables. At a given point,
the user may find that, for a variable VarJ, he wants to select a
value ValJ that has already been eliminated by the arc-consistency
process. In spite of being marked as an invalid value the user may
ask to the system to tell which previous decisions need to be
undone in order to be able to select value ValJ.

The algorithm implemented to meet this requirement is quite
simple. For each previous decision Di made by the user (variable
Vari taking the value Vali), the configurator (starting from the
original problem without user’s decisions) defines a variable
called KeepDi (domain boolean True/False) and post the reified
constraint that states (KeepDi => (Vari = Vali)). Along with these
constraints, the configurator post the constraint (VarJ = ValJ) that
is the value the user wants to select. Next the configurator tries to
find a solution (assignment to all KeepDi variables) maximising
the number of variables KeepDi taking the value True. Finally the
configurator proposes to the user the previous decisions that
should be changed (KeepDi assigned False) to enable the value he
wants to select.

An obvious improvement to this algorithm is to assign a weight
(an importance) to each previous decision (for example, first
decisions are probably more important than later decisions) and
find the solution that minimises the total weight of decisions to be
changed.

ECAI 2008 Workshop on Configuration Systems 21

5.2 Minimum and maximum cost
After each interaction of the user, the configurator simply tries to
find the solution (in background without changing current state of
the configuration process), consistent with user’s choices so far,
that (a) minimizes the cost variable (only one cost variables is
allowed) and the solution that (b) maximizes the cost variable,
reporting those values in the interface. For a small size problem as
the one described in this paper, almost real-time (few seconds) is
achieved in all the cases tested. The algorithm used is the labeling
(with maximize or minimize option) provided by SICStus Prolog
clpFD that uses a branch-and-bound algorithm.

6 SPEEDING UP THE SEARCH PROCESS

6.1 List of nogoods and “goods”
Each remote equality constraint stores the list of all past
requests/answers (in a given interaction of the user) to subnodes
(not only the nogoods are stored but also the “goods”). This way,
before requesting something to a configurator of a subnode, the
constraint consults its list to check if that request was done before,
avoiding repeating the same work. The price to be paid by this
mechanism is memory consumption but the gain in speed is very
important because, due to well know problems of backtracking
(for example trashing) the same request may be done many times
to the subnodes.

6.2 Backjumping
Search algorithms were improved by adding a graph-directed
backjumping algorithm (see [14] for details of GBJ algorithm)
rewriting the labeling algorithm of SICStus Prolog clpFD but
improvement was not clear for the elevator model (to be checked
with other models). It was tried to implement the Conflict-
Directed Backjumping (see [15] for details) but unfortunately this
revealed quite complex due to the fact that SICStus Prolog clpFD
engine does not provide predicates to determine easily the cause of
failures when a backtrack is produced.

7 SOFTWARE PROTOTYPE

To test the techniques described in this paper, a software prototype
has been implemented. This prototype includes (a) an editor
allowing the user defining the distributed product model, (b) a
module that generates automatically the SICStus Prolog clpFD
code to be deployed in each node, and (c) a module that generates
automatically a simple web-based interface (just to test the
system) of the root node of the hierarchy.

8 CONCLUSION AND NEXT STEPS

This paper has described the current results of an ongoing research
project aiming at developing a software prototype for distributed
product configuration system. The paper, by no means, aimed at
developing new techniques or algorithms in constraint satisfaction,
but consisted of a practical application of a variety of known
techniques in constraints satisfaction on top of a commercial

solver. Next steps in the project include (a) implementing a
concurrent search algorithm based on the ideas explained in [8]
because concurrent search over non intersecting parts of the
domain is a way of taking advantage of parallelism while keeping
algorithms synchronous, and (b) testing the system performance
with problems of different size and complexity.

ACKNOWLEDGEMENTS
The authors want to thank the Basque Government, for funding
the project, and the referees for their comments which helped
improve this paper.

REFERENCES
[1] Ardissono, L. and Felfernig, A. and Friedrich,G. and Goy, A. and

Jannach, D. and Petrone, G. and Schäfer,R. and Zanker, M. A
Framework for the Development of Personalized, Distributed Web-
Based Configuration Systems, AI Magazine, Volume 24 , Issue 3,
September 2003, pp 93 – 108, ISSN:0738-4602

[2] Ardissono L., Felfernig A., Friedrich G., Goy A., Jannach D., Meyer
M., Petrone G., Schäfer R., Schütz, W., Zanker M.: Personalizing
on-line configuration of products and services. Proceedings of the
15th European Conference on Artificial Intelligence, pp. 225-229,
Lyon, France, IOS Press 2002

[3] Haag, A. Sales configuration in business processes. IEEE Intelligent
Systems & Their Applications, Vol 13, Issue 4, pp 78-85, 1998

[4] Makoto Yokoo. Distributed constraint satisfaction: foundations of
cooperation in multi-agent systems. Springer-Verlag, 2001. ISBN 3-
540-67596-5

[5] C. Bessiere and A. Maestre and P. Messeguer. Distributed Dynamic
Backtracking. Proc. Workshop on Distributed Constraints, IJCAI-
01, Seattle, 2001.

[6] Ardissono, L. and Felfernig, A. and Friedrich,G. and Jannach, D.
and Schäfer,R. and Zanker, M. Framework for Rapid Development
of Advanced Web-based Configurator Applications. In proceedings
of 15th Conf. ECAI 2002, Lyon

[7] R. Zivan and A. Meisels. Synchronous vs asynchronous search on
DisCSPs. Proceedings of the 1st European Workshop on Multi
Agent System, EUMAS, Oxford, December 2003

[8] R. Zivan and A. Meisels. Concurrent search for distributed CSPs.
Artificial Intelligence, Volume 170. Issue 4, pp 440-461, April 2006.

[9] Mats Carlsson and Greger Ottosson and Bjorn Carlson. An open-
ended finite domain constraint solver. In H. Glaser, P. Hartel, and H.
Kucken, editors, PLILP'97, International Symposium on
Programming Languages: Implementations, Logics, and
Programming, number 1292 in LNCS, Southampton, September
1997

[10] R. Mohr and T.C. Henderson. Arc and path consistency revisited.
Artificial Intelligence, 28: 225-233, 1986

[11] Weigel, R., Faltings, B.: Compiling constraint satisfaction problems.
Artificial Intelligence 115 (1999) 257—289

[12] T. Hadzic and S. Subbarayan and R. M. Jensen and H. R. Andersen
and J. Møller and H. Hulgaard . Fast Backtrack-Free Product
Configuration Using a Precompiled Solution Space Representation.
In Proc. of the International Conference on Economic, Technical and
Organisational aspects of Product Configuration Systems, 28-29
June 2004, Copenhagen, Denmark.

[13] Tacton Configurator. www.tacton.com
[14] Dechter, R. and Frost D. Backjump-based Backtracking for

Constraint Satisfaction Problems Artificial Intelligence,. 136:147–
188, 2002

[15] Prosser, P. Hybrid algorithms for the constraint satisfaction problem.
Computational Intelligence, 9(3):268-299.1993

22 ECAI 2008 Workshop on Configuration Systems

Constraint-based personalized bundling of products and
services

Markus Zanker, Markus Aschinger and Markus Jessenitschnig 1

Abstract. The composition of product bundles such as tourism
packages, financial services or compatible skin care products is a
synthesis task that requires the support of a knowledgeable informa-
tion system. We present a constraint-based Web configurator capable
of solving such tasks in e-commerce environments. Our contribu-
tion lies in hybridizing a knowledge-based configuration approach
with collaborative methods from the domain of recommender sys-
tems in order to exploit user preferences to guide the solving pro-
cess through large product spaces. The system is implemented on the
basis of a service-oriented architecture and supports a model-driven
approach for knowledge acquisition and maintenance. An evaluation
of the system suggests that it can solve realistic problem instances
within an acceptable computation time.

1 Introduction

In many e-commerce situations consumers are not looking for a sin-
gle product item but rather require a set of several different products.
For instance on e-tourism platforms online users may either selec-
tively combine different items, such as accommodation, travel ser-
vices, events or sights, or they might choose from an array of pre-
configured packages. While bundling different items on their own
users are performing a synthesis task comparable to configuration.

Mittal and Frayman [11] defined configuration as a special type of
design activity, with the key feature that the artifact being designed
is assembled from a set of pre-defined components. When bundling
different products together, product categories represent these pre-
defined components. Additional knowledge is required that states
which combinations of components are allowed and which restric-
tions need to be observed. For instance, proposed leisure activities
should be acceptably close to the guest’s accommodation or recom-
mended sights need to be appropriate for children if the user repre-
sents a family. Nevertheless, the problem of computing product bun-
dles that are compatible with a set of domain constraints differs from
traditional configuration domains in the sense that fewer restrictions
apply. For instance a car configurator must compute a valid vehi-
cle variant satisfying the user’s requirements and all applicable com-
mercial and technical restrictions derived from the manufacturer’s
marketing and engineering policies. In contrast, few strict limitations
apply to a product bundle, because it represents an intangible com-
position of products rather than a new artifact. As a consequence, an
additional order of magnitude of component combinations are pos-
sible and the question of finding an optimal configuration becomes
crucial.

Optimality can be either interpreted from the provider perspective,

1 University Klagenfurt, Universitätsstrasse 65-67, 9020 Klagenfurt, Austria
E-mail: {firstname.lastname}@uni-klu.ac.at

e.g. the configuration solution with the highest profit margin, or from
the customer perspective. In the latter case, the system should pro-
pose the product bundle that best fits the customer’s requirements
and preferences. Typically, recommender systems are employed to
derive a ranked list of product instances for an abstract goal such as
maximizing user’s utility or online conversion rates [1]. The most
commonly used recommendation technique is collaborative filter-
ing, which exploits clusters of past users with similar interests (peer
users) to propose products that were well liked by these peers [15].
We exploit this type of recommender system to order personalized
preferences for each type of product in our configuration problem.
Our contribution thus lies in integrating soft preference information
obtained from recommender systems (based on for instance the col-
laborative filtering paradigm) into a constraint-based configuration
approach allowing user preferences to guide the system towards find-
ing optimal product bundles.

In contrast to the work of Ardissono et al. [2] and of Pu and Falt-
ings [14], we do not require explicit preference elicitation via ques-
tioning or example-critiquing, but depend on the underlying recom-
mendation paradigm of community knowledge and past transaction
data.

The paper is structured as follows: in Section 2 we present an ex-
tensive survey of related work before introducing a motivating ex-
ample in Section 3. Furthermore, we elaborate on the system’s de-
velopment in Section 4 and conclude by summarizing practical ex-
periences and results.

2 Related Work
Configuration systems are one of the most successful applications of
AI-techniques. In industrial environments, they support the config-
uration of complex products and services and, compared to manual
processes, help to reduce error rates and increase throughput. De-
pending on the underlying knowledge-representation mechanism, a
rule-based, model-based or case-based framework may be employed
for product configuration [17]. Configurators that utilize the con-
straint satisfaction problem (CSP) paradigm are within the family of
model-based approaches [6, 10] and include an explicit knowledge
base that is distinct from the system’s problem solving strategy. In
technical domains such as telephone switching systems, large prob-
lem instances with tens of thousands of components exist. Efficient
strategies for solving problems exploit the functional decomposition
of the product structure to determine valid interconnections of the
different components [6]. Pure sales configuration systems, such as
online car or pc configuration systems2, are much simpler from a
computational point of view. They allow their users to explore the

2 For instance, see http://www.bmw.com or http://store.apple.com

ECAI 2008 Workshop on Configuration Systems 23

variant space of different options and add-ons and ensure that users
place orders that are technically feasible and correctly priced. How-
ever, these systems are typically not personalized, i.e. they do not
adapt their behavior according to their current user.

The CAWICOMS project was among the first to address the issue
of personalization in configuration systems [2], developing a frame-
work for personalized, distributed Web-based configurators. The sys-
tem’s dynamic user interfaces adapt their interaction style according
to abstract user properties such as experience level or needs. The sys-
tem decides on the questioning style (e.g. asking for abstract product
properties or detailed technical parameters) and computes personal-
ized default values if the user’s assumed expertise is insufficient. Pu
and Faltings [14] present a decision framework based on constraint
programming and demonstrate the suitability of soft constraints for
supporting preference models. Their work concentrates on explicitly
stated user preferences and presents an example critiquing interac-
tion model to elicit tradeoff decisions from users. Given a specific
product instance users may provide critique on one product property
and specify which other properties they would be willing to compro-
mise on. Soft constraints with priority values are revised in such an
interaction scenario and guide the solution search.

In contrast to the work in [2, 14], we do not solely rely on explicitly
stated user feedback, but integrate a recommender system into the
configuration process to include assumed user preferences.

Recommender systems constitute a base technology for person-
alized interaction and individualized product propositions in elec-
tronic commerce [1]. However, they do not support synthesis tasks
like configuration. Given sets of items and users, recommender sys-
tems compute for each single user an individualized list of ranked
items according to an abstract goal such as buyer interest or the
likelihood of a sale [1]. Burke [5] differentiates between five dif-
ferent recommendation paradigms: collaborative, demographic and
content-based filtering as well as knowledge and utility-based recom-
mendation. Collaborative filtering is the most well known technique
that utilizes clusters of users that showed similar preferences in the
past to provide recommendations to users in the same neighborhood
[15, 13].

Content-based filtering records the items that were liked by the
user in the past and proposes similar ones. Successful application
domains are, for instance, the suggestion of news or Web documents
in general, where the system learns user preferences in the form of
vectors of term categories [3]. Demographic filtering builds upon the
assumption that users with similar social, religious or cultural back-
ground share similar views and tastes. Knowledge and utility-based
methods rely on a domain model of assumed user preferences that
is developed by a human expert. Jannach [7] developed a sales ad-
visory system that maps explicitly stated abstract user requirements
onto product characteristics and computes the set of best matching
items. Case-based recommender systems exploit former successful
user interactions denominated as cases. When interacting with a new
user, the system retrieves and revises stored cases in order to make a
proposition. Subsequently, a human expert is required to define effi-
cient similarity measures for case retrieval [12]. Burke [4] and Ricci
[16] have carried out extensive research within this field and have
developed several successful recommendation systems.

We chose to integrate a polymorphic recommendation service into
our configurator that can be instantiated with an arbitrary recommen-
dation paradigm [23]. Details of this process are provided in Section
4.

Preference-based searches require a more interactive and dynamic
approach for the personalized retrieval of items. Rather than relying

on a static preference model, they build and revise the preference
model of the specific user during interaction. One of the first ap-
plications of interactive assessment of user preferences was the Au-
tomated Travel Assistant [9]. Further work on interactive preference
elicitation has been conducted recently [18, 19, 21] and [22] includes
an extensive overview.

The work on preference-based search is orthogonal to our contri-
bution as we primarily focus on computing bundles of recommenda-
tions. Our implementation supports interactivity between the system
and the user during exploration of the search space. Therefore, ad-
ditional preference constraints can be added and revised during each
round of interaction (see Subsection 4.5).

3 Motivating example
To describe our approach, we start by giving a motivating example.
Figure 1 depicts a service configuration scenario from the e-tourism
domain. The user model states a set of specific requirements for John,
such as that he is interested in a travel package to the city of Inns-
bruck or that the solution should be appropriate for a family with chil-
dren (see dotted arrows marked with 1). In addition, contextual pa-
rameters such as the weather situation or the current season are rep-
resented within the system context. Concrete product instances and
their evaluations are part of the product model, e.g. sights or restau-
rants. The dotted arrows exemplify some constraints of the configu-
ration knowledge base like the location of the sight/restaurant/event
and the location of the accommodation should be the same (cmp.
mark nr. 2) or If the weather outlook is rainy propose an indoor event
(cmp. mark nr. 3).

Additional preference information is included in the configuration
knowledge base by integrating recommendation services for each
product class. For instance, when collaborative filtering recommends
items from the product class Event, transaction records of other users
and the interaction history of John are also exploited. Consequently,
higher ranked recommendation items are more likely to be included
in the configuration solution.

Figure 1. Example scenario

Informally, given a user model, a system context and a set of con-
straints, the task of the system is to find a set of products from differ-
ent categories that is optimal with respect to the preference informa-
tion derived from external recommender systems. In the following
we will detail the development of the system.

2

24 ECAI 2008 Workshop on Configuration Systems

4 Development
While designing the system we decided to use the constraint pro-
gramming paradigm for knowledge representation and problem solv-
ing - comparable to most of the configuration systems referenced in
Section 2. The Java Choco Open Source constraint library [8] forms
the basis of our implementation. The following subsections describe
the constraint-representation of the domain model, various aspects of
knowledge acquisition as well as our system architecture.

4.1 Architecture
Figure 2 illustrates the system’s architecture. It consists of a con-
figuration service component and several recommender services for
delivering personalized instance rankings from a given class of prod-
ucts. The implementation utilizes a service-oriented architecture that
supports communication via Web services, a php-API and a Java-
API, enabling flexible integration with a wide range of Web applica-
tions, distributed deployment scenarios and ensures that the system
can be extended to include additional recommendation services. The
latter requires sharing the identities of users and product instances
as well as the semantics of user and product characteristics among
all components. This is realized by a central user and product model
repository that also offers service APIs.

Figure 2. System architecture

The user interacts with a Web application that itself requests per-
sonalized product bundles from the configurator via the service-API.
The evaluation of contextual parameters can be requested using the
same means of communication. We have implemented variants of
collaborative and content-based filtering recommenders as well as
utility and knowledge-based ones as sketched in [23]. A more de-
tailed evaluation of different recommendation strategies on commer-
cial data was performed in [24]. Next, we will examine the domain
model for the configuration service itself.

4.2 Model representation
As stated above, the constraint satisfaction paradigm is employed for
knowledge representation. A Constraint Satisfaction Problem (CSP)
is defined as follows [20]:

A CSP is defined by a tuple 〈X, D, C〉, where X = {x1, . . . , xn}
is a set of variables, D = {d1, . . . , dn} a set of corresponding vari-
able domains and C = {c1, . . . , cm} a set of constraints.

Each variable xi may only be assigned a value v ∈ di from its do-
main. A constraint cj further restricts the valid assignments within
a set of variables. For each partial value assignment to variables
it is possible to determine if a constraint has been violated or not.

In addition, all constraints cj ∈ C are defined to be either hard
(cj ∈ Chard) or soft (cj ∈ Csoft), where C = Chard ∪ Csoft

and Chard ∩ Csoft = ∅. Soft constraints may also be violated by
variable assignments. Each one is typically associated with a penalty
value and the sum of penalty values of violated constraints has to be
minimized when looking for an optimal solution. For further details
and definitions of CSPs we refer the reader to [20].

Next, based on this formalization we present our domain model.
It consists of a tuple 〈X{P, UM, Cx, PM}, D{P,PM}, C{hard,soft}〉,
where:

• X = XUM ∪XCx ∪XP ∪XPM the set of variables subdivided
into several disjoint subsets as explained below,

• D = DP ∪DPM the sets of corresponding domains for the prod-
uct classes and their properties,

• C = Chard ∪ Csoft the set of constraints subdivided into hard
and soft constraints,

• XUM = {u1, . . . , uj} a set of variables from the user model,
• XCx = {cx1, . . . , cxk} a set of variables modeling the system

context,
• XP = {p1, . . . , pi} a set of index variables representing the prod-

uct classes, each associated with a recommendation service that
delivers a personalized item ranking upon request,

• weight(pi) the relative weight of product class pi used in the
overall optimization function,

• XPM = {p1.x1, . . . , p1.xm, . . . , pi.x1, . . . , pi.xn} a set of vari-
ables modeling product properties, where p.x denotes the product
property x of product category p and p[j].x the concrete evalua-
tion of x for product instance j,

• DP = {d1, . . . , di} a set of corresponding domains for the prod-
uct classes,

• DPM = {p1.d1, . . . , p1.dm, . . . , pi.d1, . . . , pi.dn} a set of cor-
responding domains for product properties,

• Chard = {c1, . . . , cp} a set of hard constraints on variables in X ,
• Csoft = {c1, . . . , cq} a set of soft constraints on variables in X

and finally
• pen(cj) the penalty value for relaxing soft constraint cj .

This domain model is defined and maintained solely by domain ex-
perts in order to reduce the traditional knowledge acquisition bottle-
neck as outlined in the next subsection.

4.3 Model definition and CSP generation
Model definition and maintenance is supported by a modular edi-
tor environment based on the Eclipse RCP (Rich-Client Platform)
technology3. Figure 3 gives an overview of the interaction with the
knowledge acquisition workbench. First, the relevant characteristics
for configuring a bundle are retrieved from the user model repository.
Second, additional external services providing contextual data such
as the current season of the year or weather information are selected.
In a third step, the set of product classes P and their associated rec-
ommender services are integrated. For each class of products relevant
properties are selected from the underlying repository. Finally, hard
and soft constraints are defined using a context-sensitive editor.

In Figure 4 depicts the complete process. This can be separated
into a design phase, where the model is defined and maintained, and
an execution phase. During the latter, the configurator is invoked for
a specific user u. First, product rankings are retrieved from recom-
mendation services and then corresponding product characteristics

3 See http://www.eclipse.org/rcp for reference.

3

ECAI 2008 Workshop on Configuration Systems 25

Figure 3. Knowledge acquisition workbench

Figure 4. Design and Execution phase

are requested from the product model repository. In the next step, all
variables in XUM ∪ XCx are assigned values by the particular user
model repository and the context services.

Then a CSP model is generated on the fly and subjected to the
following transformation steps:

• Create all variables in XUM ∪XCx in the CSP model and assign
them their respective evaluations.

• For each index variable pi ∈ P we create the related domain
di = {1, . . . , n}, where n is the number of recommendations
received for product class i. Product instance pi[1] denotes the
highest ranked recommendation and pi[n] the lowest ranked re-
spectively. The index represents the preference information about
the instances of a product class. If two product instances fulfill all
constraints then the one with the lower index value should be part
of the recommended bundle.

• Create all variables in XPM and assign them domains as follows:
∀pi ∈ XP ,∀pi.xj ∈ XPM ,∀u ∈ di pi[u].xj ∈ pi.dj , i.e. for a
given product property xj from product category pi all character-
istics of recommended instances need to be in the domain pi.dj .

• Furthermore, integrity constraints are required to ensure that the
value assigned to the index variable pi of product class i is consis-
tent with the values assigned to its product properties pi.x: ∀pi ∈
XP ,∀pi.xj ∈ XPM ,∀u ∈ di pi = u → pi.xj = pi[u].xj ,
i.e. when choosing the u-th instance of product class i (pi = u),
the related product property xj is assigned the value of the u-th
instance. Hence a complex product representation is supported,
although the Choco CSP formalism does not support object ori-
ented notation.

• Insert all domain constraints from Chard ∪ Csoft.
• For each soft constraint c ∈ Csoft, create a variable c.pen that

4

26 ECAI 2008 Workshop on Configuration Systems

holds the penalty value pen(c) if c is violated or 0 otherwise.
• Create a resource variable res and a constraint defining res as

the weighted sum of all variables holding penalty values for soft
constraints and all weighted index variables. The tradeoff factor
between soft constraints and product class indexes as well as all
weights can be adapted via the knowledge acquisition workbench.

4.4 CSP solving
Once the CSP model is generated, the Choco solver is invoked. Its
optimization functionality aims to find an assignment to all variables
in the CSP model that does not violate any hard constraint and mini-
mizes the resource variable res. We extended the branch and bound
optimization algorithm [8] to compute the top n solution tuples in-
stead of solely a single product bundle. The solver is capable of
following two different strategies for computing n product bundles,
namely 1-different and all-different. The 1-different strategy ensures
that each tuple of product instances in the set of n solutions contains
at least one product instance that is different to all other solution
bundles. In contrast, the all-different variant guarantees that the in-
tersection between two product bundles from the set of solutions is
empty, i.e. a product instance may only be part of at most one so-
lution tuple. In section 5 we present the computation times for CSP
generation and solving.

4.5 Interactivity
The system also supports a constant user interaction throughout the
configuration process. As described in Figure 4, the user either ac-
cepts a proposed solution or requests a new configuration. In the
latter case she or he may provide some feedback by explicitly ac-
cepting or rejecting some components of the proposed bundle which
results in explicit equality or inequality constraints being added. The
rich critiquing interface that accepts user feedback such as ’no tradi-
tional restaurants’ or ’the hotel should be located closer to the town
center’ supports an incremental preference elicitation strategy com-
parable to [22]. Preferences can be expressed by arbitrary hard and
soft constraints as defined in our domain model. Thus, in each round
of interaction additional constraints will be added to the CSP model.
Furthermore, for the sake of completeness, interaction sessions can
be restored and resumed at a later point of time.

5 Evaluation
Based on our e-tourism application domain we developed an example
scenario consisting of 5 product classes with a total of 30 different
product properties. Their domains are strings, bounded integers or
boolean values. We defined a total of 23 representative domain con-
straints (13 hard and 10 soft constraints) as configuration knowledge.

We created 5 different CSP models (denoted M1 to M5) with be-
tween 5 and 100 requested product instances. Details of the problem
sizes and computation times for ’on-the-fly’ generation of CSP mod-
els are given in Table 1. Clearly, the number of variables does not de-
pend on the number of recommendations and is constant for all mod-
els. However, the average size of variable domains increases from
M1 to M5 due to the higher amount of product instances per product
class. The number of constraints depends mainly on the aforemen-
tioned integrity constraints on model product instances. Therefore,
M5 contains ten times the number of constraints found in M1. As
can be seen in Table 1, the times for generating even the large M5
model are acceptable for interactive applications.

Model Number of Number Average Number of Generation
Recs. of Vars Domain Size Constraints time in ms

M1 5 58 7,45 206 10
M2 10 58 8,73 374 20
M3 30 58 13,55 1010 60
M4 50 58 16,5 1355 95
M5 100 58 23,23 2093 135

Table 1. Model sizes used in evaluation

In order to evaluate the performance of the system experiments
were conducted using a computer containing a standard Pentium 4
3GHz processor. The time measurements for the solving steps are
depicted in Figure 5. A series of 100 test runs (representing 100 dif-
ferent users) were executed for each model to obtain an average com-
putation time. We evaluated both strategies, computing a set of top
n solution tuples, where n was varied between 1 and 10. The solv-
ing times (y-axis) for the all-different strategy are presented using a
logarithmic scale. Moreover, graphs for M3 and M4 are omitted for
readability. The 1-different strategy is significantly less complex and
therefore solve times did not exceed 50 ms. In contrast, all-different
requires significantly longer.

Nevertheless, performance is still satisfactory. The highest value
for model M5 (for 10 solutions) was computed in about 1.5 seconds.
Although typical e-commerce situations require at most 10 differ-
ent product bundle suggestions, requests for as many as 100 solution
tuples can still be computed within a acceptable time period. For
instance, when using the 1-different solution strategy the solver re-
quired around 220 ms to calculate the top 100 solutions for model
M5. In the case of the all-different strategy, a maximum of 15 solu-
tions could be found in this problem instance. The associated calcu-
lations required 6 seconds which indicates that this would be be the
likely bottleneck of an interactive system.

Nevertheless, our results indicate that the integration of different
recommender systems into a configurator is efficient enough to solve
standard online product bundling tasks. Further experiments in dif-
ferent example domains will be conducted as future work.

6 Conclusion
We presented the development of a generic Web configurator that
combines recommendation functionality with a constraint solver.
Our research contribution lies in the system’s novel strategy of per-
sonalizing configuration results of product bundles. The system ob-
serves on the one hand explicit domain restrictions and on the other
hand user preferences deriving from recommender systems. A test
application was developed within the scope of an industrial research
project in the e-tourism domain which subsequently showed that the
system performs acceptably for realistic problem sizes.

REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin, ‘Towards the next

generation of recommender systems: A survey of the state-of-the-art
and possible extensions’, IEEE Transactions on Knowledge and Data
Engineering, 17(6), (2005).

[2] L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D. Jannach,
G. Petrone, R. Schäfer, and M. Zanker, ‘A framework for the devel-
opment of personalized, distributed web-based configuration systems’,
AI Magazine, 24(3), 93–108, (2003).

5

ECAI 2008 Workshop on Configuration Systems 27

Figure 5. Results for solution strategies 1-different (left) and all-different (right)

[3] Marko Balabanovic and Yoav Shoham, ‘Fab: Content-based, collabo-
rative recommendation’, Communications of the ACM, 40(3), 66–72,
(1997).

[4] Robin Burke, ‘The Wasabi Personal Shopper: A Case-Based Recom-
mender System’, in 11th Conference on Innovative Applications of Ar-
tificial Intelligence (IAAI), pp. 844–849, Trento, IT, (2000). AAAI.

[5] Robin Burke, ‘Hybrid recommender systems: Survey and experiments’,
User Modeling and User-Adapted Interaction, 12(4), 331–370, (2002).

[6] Gerhard Fleischanderl, Gerhard Friedrich, Alois Haselböck, Herwig
Schreiner, and Markus Stumptner, ‘Configuring large systems using
generative constraint satisfaction’, IEEE Intelligent Systems, 17(July-
August), 59–68, (1998).

[7] Dietmar Jannach, ‘Advisor suite - a knowledge-based sales advisory
system’, in 16th European Conference on Artificial Intelligence - Pres-
tigious Applications of AI (PAIS), ed., L. Saitta Lopez de Mantaras, pp.
720–724. IOS Press, (2004).

[8] Francois Laburthe, Narendra Jussien, Rochart Guillaume, and
Cambazard Hadrien, Choco Tutorial, Sourceforge Open Source,
http://choco.sourceforge.net/tut base.html.

[9] Greg Linden, Steve Hanks, and Neal Lesh, ‘Interactive assessment of
user preference models: The automated travel assistant’, in 5th Inter-
national Conference on User Modeling (UM), Lyon, France, (1997).

[10] Daniel Mailharro, ‘A classification and constraint-based framework for
configuration’, Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, 12, 383–397, (1998).

[11] Sanjay Mittal and Felix Frayman, ‘Toward a generic model of configu-
ration tasks’, in 11th International Joint Conferences on Artificial In-
telligence, pp. 1395–1401, Menlo Park, California, (1989).

[12] David O‘Sullivan, Barry Smyth, and David Wilson, ‘Understanding
case-based recommendation: A similarity knowledge perspective’, In-
ternational Journal of Artificial Intelligence Tools, (2005).

[13] M. Pazzani, ‘A framework for collaborative, content-based and de-
mographic filtering’, Artificial Intelligence Review, 13(5/6), 393–408,
(1999).

[14] Pearl Pu and Boi Faltings, ‘Decision tradeoff using example-critiquing
and constraint programming’, Constraints, 9, 289–310, (2004).

[15] P. Resnick, N. Iacovou, N. Suchak, P. Bergstrom, and J. Riedl, ‘Grou-
plens: An open architecture for collaborative filtering of netnews’, in
Computer Supported Collaborative Work (CSCW), Chapel Hill, NC,
(1994).

[16] Francesco Ricci and Hannes Werthner, ‘Case base querying for travel
planning recommendation’, Information Technology and Tourism, 3,
215–266, (2002).

[17] Daniel Sabin and Rainer Weigel, ‘Product configuration frameworks -

a survey’, IEEE Intelligent Systems, 17(July/August), 42–49, (1998).
[18] Hideo Shimazu, ‘Expert clerk: Navigating shoppers‘ buying process

with the combination of asking and proposing’, in 17th International
Joint Conference on Artificial Intelligence (IJCAI), pp. 1443–1448,
(2001).

[19] Barry Smyth, Lorraine McGinty, James Reilly, and Kevin McCarthy,
‘Compound critiques for conversational recommender systems’, in
IEEE/WIC/ACM International Conference on Web Intelligence (WI),
pp. 145–151, Washington, DC, USA, (2004). IEEE Computer Society.

[20] Edward Tsang, Foundations of Constraint Satisfaction, Academic
Press, London, UK, 1993.

[21] Paolo Viappiani, Boi Faltings, and Pearl Pu, ‘Evaluating preference-
based search tools: a tale of two approaches’, in 22th National Confer-
ence on Artificial Intelligence(AAAI), (2006).

[22] Paolo Viappiani, Boi Faltings, and Pearl Pu, ‘Preference-based search
using example-critiquing with suggestions’, Artificial Intelligence Re-
search, 27, 465–503, (2006).

[23] Markus Zanker and Markus Jessenitschnig, ‘Iseller - a generic and
hybrid recommendation system for interactive selling scenarios’, in
15th European Conference on Information Systems (ECIS), St. Gallen,
Switzerland, (2007).

[24] Markus Zanker, Markus Jessenitschnig, Dietmar Jannach, and Sergiu
Gordea, ‘Comparing recommendation strategies in a commercial con-
text’, IEEE Intelligent Systems, 22(May-June), 69–73, (2007).

6

28 ECAI 2008 Workshop on Configuration Systems

������� �	
���	��
�� ����������	 ��	�
���

�������� ���	 1
���
����
��� ����	���
 2

��������� ��������	
�� 	��
�����
�� ����
�� � ���
� ���
�
��� 	
�
�������	�	
�� �� � ���� ���	��
��	
�� �	��	���� �
�
�������	 �� 	

� �	��	���
� 	
�	 	
� ����
�� ��

�
�� ���
��	
������	� ��� ����
��� 	�
����� 	
� �
�������� �� ���� ����
���
���
���� ���	����� ��� �����
����� �� 	
� �
�� ��� ����
����
	� �� 	
� ������ �����	���	�� � 	

� ���	��	� ���������
��	
�� 	��
�����
�� ��� ����
��
��� �� ������	
�� �����
�
	
�
���	
���	
�� �� ������	� ��� ����
��� �		
�� 	
�
� �
�
��
��� ������ !���������	
�� 	��
�����
��
��� ����
�	���
�
���� �����
	�� ��� 	
� ����������	
�� �� �
���� ������	�
���
 �� ���"� �� ���
�� ��	
��� #�
	
 � ��� �����	
���$
��	 ���� ����
�� 	� 	
� ����������	
�� �� ������� ������	�
��� ����
��� ���
 �� �����	��� �� �����
�� ����
���� � 	

�
����� �� �
��
�� 	�
�	����	� ���������� ��� ���	��	������
����������	
�� �������
�� �
	
 "�������������� ���������
	����

� ���
��������

 � ���� ����
��� ���	����� �� ��	 "��� ��� ������	���

� ��	�
� 	
� ������	� ��	 �� ��	
��� ������	�� �� � �
���
����������� ������	� %� 	
� ���
��� ��������	
�� ��	
���
��� ��������	�� �� � ��	
�� 	��
�
��� ����� ��� ���	�����
��� �����
����� �� 	
� ������ ��	 �� ��	����	
��� &'(� 	

�
�
��������
� ���� "���� �� ���� ������
�� &)*(� %� 	
�
�	
��
��� ���	����� �� ��	 "��� 	
�
� ����������� �������

��� �
��� ����������� ��� 	��
����� ����	���	�� &)+(�
	

�
	
� ����� �� � ��������	
�� ����
��� ,��� �����
����� �����
������� 	��� 	� ������� ��������	
��� 	
�� ��� ���� 	� 	
��
�������"
�� ��������	
�� ��	����	
��� �

�
 ��		�� ��
	 	� 	
�
���	�����- �
�
�� ��� ������ .

� ��� ����� ����	
���� ����
	����� �� ���� �� 	
� ����� �� ���� ����	���� ��������	
����
�����/���	��� ����� �� ��������	
�� ���	��� ���
� 	
� ����
�� ����
�	�
	
��
�	����	
�� ���
���
��� ����	
���� ������	�

�� 	
� ��������	
�� ��� �����	
�� ��
�	����	
�� ������	 ���
����
�� ��	����	
���� 0
	
 � ��� �����	
��� &1�)2�)'(��
�	�

�� ����������� 	��
�����
�� &3(��� ��
���
�� ����
�� ���
	
� ����������	
�� �� �
���� ������	� ��� ����
��� ���
 ��
���"�� ���
�� �� ������	 �
���� .
��� 	��
�����
��
��� ��	
����
�	����	��
�	� ��������	
�� ���
������	� ����
�� �
	

������� ������	� ��� ����
���� .
� ��4�� ���� �� 	

� �����

� 	� �
����� ������
��
� �

�
 ����������	
�� 	��
�����
��
��� �� �����
	��
� ��������	
�� ����
���� .

� ���"
�� ����
������	�� �
	

� 	
� ����� �� 	
� �%5�%5 ���4��	��

1 ����������� 	
 �	������
������ ��� ������������ �������� �
	
 �����	�	��

2 �����������
������ ��� �������� ��
	�������� � ������
���
3 ��
 �
 !����	���"��������
������������� ������
��#���
�$������% �� � ��	&��� ����	���� '� ��� (������ (������)�����

	� �����	�	�� ��� ���	#���	�*

	
����

�����
 �
��
�����
�� �����������	
 ���
���

#���� ����� &)($
� ��� �� 	
� ���	 �������� ���� �����������
	
�� 	��
�����
��� 	 ����
��� ����������	
��� �� 	
� ���
�
�� ��
�
��� �� ����� #����� ��	
��� �� ����
��
�� ��	�$� � �
��

���
	� ����	
�� �� ��
�
��� ����	
	���
� �����
	�� 	� ������
��	� ������	 ��
�
���� �

�
 ��� ����� �
	
 �
�
��� ����������
�	���	����� .
� ���
�
���
� 	�
���	
�� �
�
��� ����� ��� 	�
��������� 	
�
�

�
�� ��	��
	��� 	
�	 ��� ��"���� 	� 	
�
��	
�� ����� � ���� 62� ������
�� ��
��
�
���� ���� ���
����
��� 	�� ��� ����������� ������	� 	� ��	���
�
 � �����
�����
 ���� ������ 	� �� ��
	���� �� � ���
� ��� ���� �������
���	
�� ��	��
��� 7������� ���������	
�� ��	��
�� 	��
�����
��
��� �� ����
� ���� ����
�� ��		
��� ������	
�� 	
� ����������
	
�� ����������	 �� ������� ����	������ &)8(� .

�
���� �
��
��	 �� ���	
�� �
�������
� 	

� ������

����
�� ���
� ���
���
 #���� ����� &)1($ �������
�� ������
����
	��� �
�
��� 	� 	
��� 	
�	 	
� ��	
�� ����
�� ���������

� 	
� ���	� 	��� ��� �����
��� �� � ������ �� "�������
�� ���	����� � ���� ����� ���	�
�� ����
��� ��
�
��� ����	

	���� ��	�� ������	�� �� "������� �� ���	����� � �
�
���
	�
����	
��
� ���� 	� �������	� ������	 ��
�
���� &*(�

�
 ���
�
	

� ���� 	
���
	��� �
	
 	
�

�
��	 �
�
���
	� �������� 	�
	
� �
��� ����������
������	
��
� 	
� ���� ������� .
� ���
�����

� 	��
����� ����
�� ��� ���������
�� 	��	������
	���
���
 �� ��	
���� �� ��� ������ %�� �
������� �� �����
�� 	

�
	��
�
/�� 	� ����������� ����
���
� 	
�	 � ���
�� 	
� ���
��
��
�
	� �� 	��	��� ��������	 �����
�	
��� � ��
��
�� � ����
������ ��/�
��� ����	
	
�� ��������	
��� �� ��� ����� 9��	
���
����� � ������ ��� ���� ������ ��	��	��
� ���
��� �����
��
����
�� ���
 �� :�-�� 6��
�� 	
� �������	
�� �� 	
� "�������	
��
�
���� ����
�	
��� &*(��
�	����	
��
	���� �����������
	
��� ��� �� ����� �� ��
�� 6���� ����
�	��� &)1(�

�
 �����
	
� ����
�	
�� ��
�	����	
��
	��� �� 	
� ���
� �� 	
�
� �����
��
�
	� �� ��
�� �����	�� �
��� 	
� ��
�	
�� ���� ������������
�� ���� ���
� �
 ���� ����� �� ��
 ����������� �� ���	
 ���
�

��
������� ��� ��
 ��
���������� �� ���
�
����
 ����
���������
������� ���
� �
����
������� ��	
��	�� 	
� �	
�
	� �� ��

	�� ��� � ���	���� ��� ����������
	��� �
	
 	
�

�
��	
�	
�
	�� ;���
������
��
�	����	 �
����
���
��� 	� ��
����
	
���
� 	

� ���	��	� 9�� :�-��
�	����	 �
����
��� ����� ��

������� �
����������
������� �
��������
 ��� �
�
��� 	���
��� �
��� �����
� �	
�
	� ������ �
	
 ������	 	� 	
�
�	����	
�
����
���� .
� ���� ����
���

� �����������
� 	���� ��
��
���	���� #��
�
	$ �� ���

�	����	 �
����
��� <
��� 	

�
��
�����	
���
	�� �	
�
	
�� ��� �� �����	�� ��� 	
� ��	
�� �����
�� ������� ��� 	
� ����
��	
�� �� �	
�
	������� ���������
��	
�� �������
��
� 	
� �����
�� ����
��� ����
�
� �
���

� &=(� � ���	
�� �
�����
�� �� �	
�
	������� �������
��
� 	
�
��������	
�� ���	��	
� ��	�
�� 	
� ����� �� 	

� ������

ECAI 2008 Workshop on Configuration Systems 29

���������	
����
���������
� ������� �������� �	
���
�
���	
���� �����
	� �������� �	������� �	 ��� ���� ���
�������	�� �	 ����� ����� �
	 �� �������� ������� �����
����	

����
������������� ��
 �	���������
���
����
�� �����

����	
���� �����
	� ����	��
� �������� ���������	��
�� ���
������� �	 ��� �
��� �

 ��� �

�
�����
	� ��� ��������	��	�
��	���
�	��� ������ ��	���
�	�� �
��� �������� ���������	��
�� ����
��� ������ ���
�������! ��	���
�	�� �	���� ��� ��	����
��	�! �
 ���������	��� "� ������� �	��	�����	����# ����
	
���	

	� ���
��
�	����	
������
�� �������� ���� �	���
�	���
���

����
���� ������� ��� �
�� ����	�������
� �
	! �	��������
�
��� ��	����
���	 �	����	��	��
	�
��
������	
��! ����
��	�� ����# ����# ������!��
��� �������	�
���	
����
����
��������	� ��� �
	��	� �
 �
	���
�� ��	����
���	�� ����	

����
������������� �$� ��
	����� �!�� �
 �	���������
���
�������	�
���	� %� �������� �����
���!
�	����	� �� �������	�
����� ����	� �� ��� ������
	 	���� �
 ������ %	 ��	��
�� ��
��	��	���
��� ������	�
	� ����
���
���� ������	� ����� �����
�
���!
�	����	� ����
�� �����	�
�! ���������� �
 ����� &����#
' �����(�
���� ��
	 ����
���� ��!����� �� �
���������)��
�
*�� ��
� �	 ���� �
��� �� ��
���!
	� ����	� ��+���	� ��	�
����� �
 �
����
���
	� ��	��	���
��� �������	�
���	 �	 ���
��� �� �
�� ����
�����
��� �	 ��	����
���	 �����	���

����������	
�� ������
�
� ,������	�
���	 �
 ��	�
����
��� �+���	�� �
	
���� �	

• �������	�
 ����
��� �
�� ������� ��	� �� ��	����� &����
�

 �
� �����(

• �������	��	�
 �������� ��	����
���	 &����
�
 ����
����� '
�� �
��	� ��
 ��
����
�� ��
� �
������	� �	�����
�	� ����
��� ������#
����	�
�� ������#
	� ����� �������	�(

• �������	��	� ��� �� ��������
 ��	����
���	 &����# ��
������� ����� �	�������� ���
��� �

 ' (

• �������	��	�
 �����	����
���	 &����#
 ����
�� ����!��
��� ����
���
��
 �
������
� �!�� �
 ��� ����
�
 ' �����

�� ����!����
��
����-. �����������	�
	�
������	�(

• �������	��	� �	������
�
�������� �� �����	�	� �����	��
&����#
 ������ �
�
 ��		�����	
��
 ����	��� �����	(

 �	�����	��!#
 ���� ��������! �
 ��
��
	� �	����
���	 ����
	
����
�� �������	�
���	 ����	������� �	 ��� ��	����
���	
��	���� �
	 �� �	�����	��� %	 ���� �
��� ��� �
*��
���� �� ���
�	����
���	 �
 �
����
���
	� ��	��	���
��� �������	�
���	
�	�� ������	� ��	����
����� /�
	
�!0� ������	�
����
����
�	 ��� ���� �1# 23# 24�
	� ���� ��� �� ����	�
	� �������
�����
����
���� �! ��������	�
 ���� ���������
��� 	����	
�
 ������
���
������ ���� �����
��
	� ���������� ������ ����

������� �������
 ����
����� �������
��
�
������
"�� ���
�	��� �
 ��� �
��� �� ���
	�0��
�
������� %	 ���

������	� ������	 �� �	�������
 �����	� ��
����
��� ���
���
�	 �
 ��	����
��� ���������� %	 5�����	 $ �� �������
�����
	� �
����
���
	� ��	��	���
���
���������
�� ��	���
��
��� ��������
	� ��������
	� �	������� ��� ����	���	� ��
�����
���������� 6 ���������	 �
 ���
���
	�
����� ���� ��
�����	��� �	 5�����	 �� 5�����	 1 ��	������ ��� �
����

� ������� 	
��
��

%	 ���� �
��� �� ��	����� &
�� ��
��	� �
 ���������!(�	�! 78
�9
��	����
���	 ������ ��	�����	� �

�
����� &	� �
��
���	 �

��������� �� ��		�����	�(# �
�� �
��	�
 �	��� ���
�	 �
 ����
����� �
�����)�� ��
���� ������� ��
 ' # ��
� �
�
�
�
�����

 ��������
�� &mb(#
 �
�� ���� &hd(#
	 �����
� ����� &od(#

 ��������� &pr(#
	� �����	
��!
 ��
����� �
�� &gc(� "��

���	� �
 �����! &me(�� �������� �	 ���
�!��� &1# 2# 3# ��
4(� 6 �������� ������
����� ��������
 �
���
�� �
��
�
�����
�����������#
 ����� ������
����� �� ��������
	� ��	�����	�
����
 ���	�� ��� �
 ��	���
�	���
/� �������	� ���� 	�	���	����
���
�������� �
���� ���

�
��� ��
�
����� �� �����
! ��	���
�	�� ���� �	��������!� '���
�������
�� �	�������� �	 "
��� 2&
(� '�������� ���
���
	��
��
�������
��� ����
	 �	�����! ��
	�
�� ��	���
��# �����
���� �! CScr� Socket �������	��
 ���������:� ��		�����	 ��

 ��������
��� ;�������
��� &��� "
��� 2&�((
�� �����	��
�� �� ����
����� ���� ������ �
	�

������ 6:� �� %:� ����
�������# ������ :
: �� :�:# �����������!� "���#
 ������� ��	�
���
�	� �������� ��
�
 ��������� ���� �� ��� ��������
��<
pr.socket = mb.socket� %	
������	# ���� ��������
��� ����
����
	 �	����
��� ��
����� �
�� &IntGr = yes(�

�� ������ ���	

�
 ��
�
�� � ��
�
�� � �
��

�� ������ ����	 ���	

�
 ��� ���

�
 �� �
�� � ��� ���
�� � �� �

����� 	
 �	������	� �
� �����
�� ��!�	"�
	�� �"� 	�#!��

5��
�
�� ��
����� �
��� ������� ������ ���
���
	�� ��
	
����� �	����
��� �� ��������
���� =�
����� ���
���
	�� ��

�������
��� ����
	 �	�����! ��
	�
�� ��	���
��# ����
����	��� �! ��
����� ���
���
	�� ����� &GScr(� 5����
��!#
��������
��� ���� �	����
��� ��
����� �
�� �����
! �����
��
����� ���
���
	�� ���� GScr� =�
����� �
��� g2# g8#
	�
g9 �
�� ��
����� ���
���
	�� ������ 2800# 2200#
	� 5500#
�����������!� 6 �!���� ����
��
!� �
��
 �
! �� �������
��
������ "��� ��� ��	���
�	� (mb.IntGr = no) =⇒ (gc �=
no) �� �	��������� ���=5�� ��
��� �� ��
����� ���
���
	�� �

��� ' # �������	��
� ��� �
����� GScr �������� �! ���
��
����� �
�� �� ��� ��������
���
-
�� ����� &hd(
��
�
��
��� �	 ��+���	� �
�
������ &=>(

&h2.capacity = 250# h5.capacity = 500#
	� h9.capacity =
1000(� 6�� �����
� ������ &��� "
��� 3(��
� .
	� .?.�
5��� ����� .?. �� .?. @ >����
!�

�� $	��� %&% '
�% ��(�

)�
� *�+,	
�
�"	�

$	��� *�+,	
�
�"(�

�	 �� �� ��
�(��� �� ��
"	 �� ��� ��
"(��� ��� ���

�����

 �	�-�	���� �� �-���
� �	�.�� �� �!� 	+����# �/
 -��

"����
������	
�
�
�����# 	
���! ����� �����	� &��(# ������
&��(#
	� �
��	� &��(
�� �	������ �	 ��� ��	����
���	 �����
�� �������� �	��	��� ��� �
 ��� ' ���	� ��	������� .��
���

�� �������� �	 "
��� $�
"��
������	� ���
�	 �	������� ��
�
��
���<
ph �= no =⇒ od.dw = yes< ��
������ ������
ph = adv =⇒ hd.capacity ≥ 500< ���� ��
��
�� ������
ph = adv =⇒ pr.CScr ≥ 2500< 'A
��
��
	��� �����

30 ECAI 2008 Workshop on Configuration Systems

������� �����	

�
���
��
�

�
����

� �no� 	��
����
���

�
�

�sd�

�
������

�
�

�hd�

�����	
����

� �no�
�����
���� �	�

�std�

����
��� �������
�� �����		
�
��

�adv�
���

�

����

� �� ��
����	
�2d�

�� ����	
�3d�

�
���	
�	�
��������
�� ��

����	� ��
��	����
�
	 �adv�

���	
 ��
��
��� �	��� �������	 �� ��� ��

� �!�����

ph = adv =⇒ me ≥ 2� ��� ��� �	
���
	 ����
 ����
���
���

vi = sd =⇒ pr.CScr ≥ 2700� ��� ��� ��
�	
�
	�����
vi = hd =⇒ pr.CScr ≥ 4500� ��� ��� ��
�	
�
	�����
vi = sd =⇒ od.dw = yes� ���� ���
�	
��
vi = hd =⇒ od.bw = yes� ���� ������
�	
��
ga = 3d =⇒ pr.CScr ≥ 1500� ��� ��� !� ������
ga = 3d =⇒ pc.GScr ≥ 1500� ����"��� ��� !� ������
ga = adv =⇒ pr.CScr ≥ 2800� ��� ��� �	
���
	 ������
ga = adv =⇒ pc.GScr ≥ 5000� ����"��� ��� �	
���
	

������
#�� �"
 �������� 	������
	 �� �"�� ���
�$ %
 �����
 �"
 ����

��%��� 	����������� �� ������� ��	
������
�������
�	
�
	���
��� w(vi) & '($ �"���� w(ph) & '($ ������ w(ga) &)($
����
���� w(pr) & *+($ ���"
�����	 w(mb) & '($ ������
�� �
��� w(me) & *'($ "��	 	��, w(hd) & *-($ ����"���
���	 w(gc) & *.($ ������� 	��

 w(od)&*/(0 1"��
 �
����
�
����	 ��
� ���� 	��
�� ������
� ��
��2�������$ �
��
�
����
��

 ��
�
�
��
� ���� ����������� �����
�$ �� �"
 ����������� ��
������ ����������� �� 	����
��
	 �� 3)40

��������� 5
 ���
 �"
 	��������� �� �
����
�	����� ���
�����"�� �� �"
 �����%��� ���

������0 �
������ Conf "��	�
��

���� K ���2���������$
��" "�
���
���
� ��� �"

6������
N �
����
� f1, .., fN 0 1"

���
 �� �
����
 fi �� ���2��������
k �� �
�
��
	 �� �� fi,k0 1"
 kth���2�������� �� �
�
��
	 �� ��
Confk0 ������2������ 7	������
	 �� �
����� !0*8 �� ���2�����
���� k �� �
�
��
	 �� �� ck0 5"
� �
�
����� �� �"
 ���2�
 ��
�"
 ����

 ��
�$ %
 ��
 ��	
6 u$ u /∈ K$
0�0$ fi,u �
�
�� �� �"

���
 �� �
����
 i ��� �"
 ����

 ��
�0 1"
 �
� �� ��
��2
	 �
��
���
� �� �"
 ����

 ��
� ���2�
 �� Fu0 Fu = {fj |fj,u �= noval}$
��	 �"
 �
� �� �
����
� ��� %"��" �"
 ����

 ��
� ���2�
 	�
�
��� "�

 �
���
 �� F̄u0 #���"
����
$ � ���9
����� πFu(Conf)
�� ��

���� ���2��������� ��� %"��" �"
 ���2�
 "�� 7	�
� ���
"�

8
���
� �� �
�
��
	 �� �� ConfFu 7ConfF̄u

80 1"
 ��	
6
�� � ���2�������� (k) �� �����	
�
	 �� �
 �����	
	 �� Confk

��	 ���9
������$ �

 1���
 :$ �� �
��	 �����
�	
	 �
��
�� ��
	�������
 ����
�0 #����� dom(fj) �
����� �"
 	����� �� fj 0

" f1

��
f2

��
f3

��
f4

�

f5

��
f6

�

f7

��
f8

��
f9

��
c

1
�
� �� �	 �# # ��
� �� $�
2
� 	�� �� �	 �� # �% �� �& 	�
� 	� 	�� ���
'
� � �% �(�& ��
' �� ��� ���
(
� ' �(�($& ��
% 	� ��� ��
'
# � �(�) �& 	�

u
�
� ��

���	
 �� ����
��	 ��
������
�
	 �
� ���
�� �	�� ������

� ���������	
��� �
����
���

��� ���
	��� ��
����

1"
 �������"�� 	������
	 �� �"�� ���
� ��
 	������
 ���������
�� 	
�
����
 ��������� �� 	����������� �� ��	�
�	��� �
����

���
�$ ��	 �������
� �"�� �� ���2���������0 1"
 ����
�����
��� ����� 	������
 ��������� ����
�	 ��
;����� %"
� ����
������ �
����

���
� �� �"��
;����� �� �
 ��� ������ ��� �
�
����
 � ����

���
� �� ���2��������� ����	 �
���� �����
	0
5
 	
��	
	 �� �����	
 �	
�� �� �"
 �����
����
�� ����� ����

������� ������ 7���� 8 3*.4 �� ���
 %��" � ������ 7�������8
��	 ���
��� �
����
� �� � �
����

� �����
 ����
�0 <� �"

�
����
 �

� �"
 	������
 �� 	
2�
	 �� �����%� %"
�
 �"
 �����
���� dfi

(x, y) �
����� �"
 	������
 �
�%

�
���
� x ��	 y ��
�
����
 a$ ����� � 	�=
�
�� ������������ ��� 	�=
�
�� � �
� ��
�
����
�� 	������
� �
�%

� � ������ �
����

���
� ��
 ����
���
	 � �������� vdmfi

(x, y)$ ��	 �"��
 �
�%

� ���
��
���
�
� � �������� difffi

(x, y)0 ���
	 ��
6�
���
��� �� 3*.4$
�"
�
 ��������� ���
�	
 ������� ��>�
��
 �� �"
 �

���� 	���
����
 �
����
�
���0 �������

���
� �
����
	 � dfi

(x, y) ��

�
�������� �� ������ 7��� ��� ��%� �8 �
 �� ����
 / �� *0

dfi
(x, y) =

⎧⎨
⎩

1 �� 6 �� �� ��,��%�? ��"
�%��

vdmfi

(x, y), �� fi �� � ������
difffi

(x, y), �� fi �� ���
��

1"
 �������� vdmfi
(x, y) �
���� �"
 ��������� �� � ������

���
� �� � 	����� ������������ 0 1"�� ��,
� ����
 �
6���
����� �"
 ���������� �"�� ��	�
�	��� �
����

���
� ���������

�� �"
 ������2������ �� �"
 �����

���� � �� ��� ���
 �������
2������ �� ���2���������0 ����"�� �

�������� ���$ �"
 ����
�
�"
 ���������� �� � ���� �� �
����

���
� �� �
 ��
�
�� �� �	
��
������ ������2
	 ���2���������$ �"
 ���
 ������� �"
�
 �
����

���
� ��
 �����	
�
	0 @� �"�� ���
� %
 ��,
 � ����������
�
%$
��	 �����	
� � ���2�������� �� �
���� �� ��
 �� �"�

 �����
��
7����� 7ba8$ ����	��	 7st8$ �� �	
���
	 7ad88$ %"��" �� ��
	 ��
�"
 ������2
� ��� ���� 7�

 ������ A�B �� 1���
 :80

vdmfi
(x, y) =

√∑C

c=1

∣∣∣ Nfi,x,c

Nfi,x
−

Nfi,y,c

Nfi,y

∣∣∣2

=
√∑C

c=1 |Pfi,x,c − Pfi,y,c|
2

@� �"
 �������� vdmfi
(x, y)$ Nfi,x �� �"
 ����
� �� ���

�����
� 7���2���������8 �� �"
 �������� �
� T �"�� "�

���

x ��� �
����
 fi? Nfi,x,c �� �"
 ����
� �� �������
� �� T �"��
"�

���
 x ��� �
����
 fi ��	 ������ ����� c? C �� �"
 ����
�
� �� ������ �����
� �� �"
 �����
� 	����� 7�� ��� ���
 ! �
�

 1���
 :80 Pfi,x,c �� �"
 ���	������� ���������� �� ������
����� c ��

� �"�� �
����
 fi "�� �"

���
 x$ �0
0$ P (c|fi = x)0
5"
� Nfi,x = 0$ P (c|fi = x) �� �����	
�
	 00
#��
6����
$ �� ���
6����
 ���������� Conf $ Npr,as = 2$

Npr,i4 = 2$ ��	 Npr,i9 = 10 1"
 ������2������ ��
;�
���
� ���
����
���� Npr,x,c ��
 ��
�
��
	 �� �
�� "��� �� 1���
 '$
0�0$
�
����

���
 �� ��� ������2������ ����� 7��8 ������
6����
���
0 1"
 �
������� 	������
 �����6 ��� ����
����� �� ��
�
��
	
�� �"
 ���"� "��� �� 1���
 '0
�������
� �
�%

� ���
��
���
� x ��	 y �� �
����
 fi 7��

Conf8 ��
 	
�
����
	 � �������� difffi
(x, y)0 ����
)'(��

�"

���
� �� � ������ 	����������� ���� %��"�� �%� ����	��	
	

������� �� �"
 �
��$ �"
 	�=
�
��
 �
�%

� ���
���
���
�

ECAI 2008 Workshop on Configuration Systems 31

��� �� �� ��
	�
 � �
��

 �
�
� �

�� �� ��
�� � �����
����
�� ����� � �����
��
���� ����� �

����� �� ������������� ����������� �� �� ������� ��

���������
��
������� !����� ��� "��

�� ������� �� � �	
��
�� ����
	�
�� 	
 ��
�� �
�� �
��� ��	

�
��� 	�
	 �� ���
��� ����
� �
����
� ���	� �� �� �
	��
	��
�� ��� !���	
����
��
�	�� �
��
��"�� �� �������� 	�� ���#
	
��� �
� �
�� �
��
��� �� 	�� �
���
� 	�
	
		����	�$ �
 	�
	
	�� ���	
��� �
� �
�� ��%�	 �
��
��� �� �� 	�� �
��� &���� '
�#
����$ �������� �� 	�� �
���
��
��
�	����� ��(���� �
�����
	
 �
��
 %�
�
��� �)��	
� 	�� �
�	����	�
�
�
�
		����	��
*
� �(
�%��$ ��
 �
��
��� �
� �
���� �����
�� �� 	�� �
���
&���& ��
��
�	 ����� �
�� ��	 ��	�
�� �(��%	�
�
� �
�� %
�#
����� ���
��
��� �
���
� �&$ 	��� �������� �� 	�� �
��� �
���

��
�	
��
�� �����	 ��
 �
��� ���� 	�
� &�+�!

difffi
(x, y) =

|x − y|

4σfi

,�� ���	
��� ��	��� dfi
(x, y) ���
��� ��	����
 �
��� ��
�

& 	
 �� ,�� �����
��	� simfi
(x, y) ��	���� 	�
 ��
	��� �
����

x
�� y
� ��
	��� fi �
� 	��� �� ��-���
� simfi
(x, y) =

1 − dfi
(x, y)� .� 	�� �
��
���� ������	�
�� �� ��
� �
� 	����

��	���� �
� ��
%%���� 	
 	�� ���
�����
	�
�
� ��
	��� �
�#
���
� ����
� 	
 	�� ���
�����
	�
�
� �
�%��	� �
�-���
#
	�
��� .� 	�� �����
� �
��#�
��� �
�-���
	�
� �� �����	��
	�
�(��	��� �
�� �����
�� �
�-���
	�
�� ��
���� 	
 %�����	 ��	��#
��	��� ��
	��� ��		����
�� �
�%��	� �
��	�
��� /
	� 	�
	
��
�
��� �������� ���� %����������
� ����
� 	������
� ��
	�����

*
��
���� 	���
%%�

��$ �� �(��� �(��	���
��
��	��� ��
	
 	
0� ��	

��
��	 ����������
� ��
	��� �
����$ �
	 1��	 �����	
�2�
��	�� *��	����
��$ �� �(��� %����
��
%%�

���� 	
 	
0�
��	

��
��	 	�� 	
�����
� ��)����	 ��
	�����

��� ������	 ��
��
��

,�� ���

�

��
��

������ �� ���%��3 ��	������
 �����#
�
� �
�-���
	�
�$ ����� �� ��
���	 	
 	�� 0�
�� %
�	�
�
�	���
����4� %�
-��$
�� ���
����� ��
	��� �
����
� 	��� ��
���	
������
�� ,�� ��
���	 ������
� �� ��	�������
� �
��
�� ����#
	
��� ��	���� 	�
 �
�-���
	�
���3

dist(Confu, Confa) =
∑
i∈Fu

dfi
(fi,u, fi,a) ∗ w(fi)

*
� ��
���	 ������
� c 	�� �
��
���� �
� 	
 �
��3 �c′, 1 ≤
c′ ≤ K : dist(Confu, Confc′) < dist(Confu, Confc)�

.�
�� �(
�%��$ 	�� ��
���	 ������
� ���
	��� 	

�� ����
%�
-�� �� Conf13 dvi(no, no)5 &�&&&$ w(vi)5&�&�&6 dph(no, no)
5 &�&&&$ w(ph)5&�&�&6 dga(3d, 2d) 5 &��&�$ w(ga)5&�&�&� ,
#
	
� �����	�� ���	
��� dist(Confu, Conf1) 5 &�&7�� �%%�����
	�� ��
���	 ������
� �
����
 	
 �
�-���
	�
�� Conf2 �� Conf5

%�
����� ���	
���� &��+�$ &�++�$ &�+�&$
�� &�&��� 8��
�	�#
�
	���$ 	�� �
����
	�
�
� 0�
�� ��
	��� �
����
� 	�� ����
%�
-��
�� Conf1 �� �
	 �
����	��	 ���
%����
�� �%� %���
�#
�
����
�� �
	 ��9����	 �
� :� �
������ *�
	��� �
����
� 	��
��
���	 �
����	��	 ������
� Conf5
�� ���
�������3 pr = i4$
mb = i1$ me = 2$ hd = h9$ gc = g8$ od = dw�

��� ��
��	�� �����
	� ��	��

,�� 	
����
� �������� ���
� �� ���
������ ��������
� ��
#
	��� �
���� �
���
� �
�� ������
� �
�-���
	�
� �� Conf
!�
	���; �
� �	� ��
	��� �
����� ,�� �����	
� �
�� ������
�
�
	� �� ��	������� �� 	�� ������
� �2�
� ��
	��� �
���� 	

	�� ���� %�
-��� *
� �(
�%��$ 	�� �����	
� Conf1 �
� ���� u ��
2$ ���
��� fvi,1 = fvi,u = no$
�� fph,1 = fph,u = no� ,���$
Conf1 �
��� ���� 2 �
	�� �
� pr = as$ mb = a1$ me = 1$
hd = h2$ gc = no$
�� od = dr� ,�� �
��
���� ��
	��� �
����
��	 �
�	 �
	��3 pr = as �: �
	���$ mb = a1 �+�$ me = 1 �:�$
hd = h2 �+�$ gc = no �+�$
�� od = dr �+��

,�� �
����	����
�
 %
	��	�
� ���
�����
	�
� �� ����0��
��
����� 	�� %�
%
��� �
��� 	
 	�� 0�
�� �
���� �� 	�� ����
%�
-��� ��	�� ���� �����	�
 ��
	��� �
���$ ���
�����
	�
��
���� �� ���
����
	�� 	
 ��<��	 	�� ��� ��	�
	�
�� =�� 	
 �
�#
���	���� ����0�$ pr = i4 �� �
	��
�� gc = g2 �� �
	�� ��%�
��
	�
�� ��	� �
�	 �
	��$
������� 	�� �����	�
�
� 	�� -��	 ��
#
	��� �
��� ��
 �
�
�� �� �
��
�
 	�� �� �
	���

/�($ �� �����	� 	�� �
����

� ��
�� %�
%
�� 	�� �
���#
�%
����� �(����
��� *���	$ �� ��-�� 	�� �2�
��	� ����	�
� eq
	
 ��	��� 1 ���� 	�
 �
����
�� �2�
�$
	������� 0�

eq(x, y) =

{
1 �� (5�
0
	�������

,�� �����	 w(confx, confu)
�
 ������
� �
�-���
	�
�
confx ��	� ���%��	 	
 �
�-���
	�
� confu �
 ����4� %
�	�
�
�
�-���
	�
�� �� 	�� ������
� �2�
� ��
	��� �
���� �� ��
#
	���� �
� ����� confu �
�
 �
��� �Fu�3

w(confx, confu) =
∑
i∈Fu

eq(fi,x, fi,u)

,�� %�����	�
� ��
�� pr(confu, fj , v) �
� �����4� �
�-���
#
	�
�� confu �
���� �
��� v �
� ��
	��� fj �� 	��� ���
� �����	�
��
	���
� ������
�� �
���� �
��� v �
� ��
	��� fj 3

pr(confu, fj , v) =
K∑

i=1

eq(fj,i, v) ∗ w(confi, confu)

� �
��� v ��	� �
(���� %�����	�
� ��
�� pr(confu, fj , v)
�� 	�� ���
�����
	�
� r(fj , confu) �
� ��
	��� fj �� �
�-��#
�
	�
� confu3

r(fj , confu) = v ���� 	�
	

�v′, v′ ∈ dom(fj) : pr(confu, fj , v
′) > pr(confu, fj , v)

>� %�
%
��
 �
��-��
��
��	�� 	
 ������ ������
�
�����	�� /�����
� �����	�
�� ��	������� �� 	�� �����
��	�

� ������
�
�� ���� %�
-�� ��
	��� �
���� ���	�
�
� �2�
��	�
���� �� �� � ,���$ �����
� �
���� �
�%
��� 	
 ����4� �(��	#
��� �����	�
�� �
�	����	� 	
 	�� �����	
�
 ������
�� *��	���$
�� 	
0� ��	

��
��	 	�� ��%
�	
���
� ��������
� ��
	����
�
�
 ���� ���
	��� �����	��� ?
	�
� 	�
��
�%��	�
�� �(#
	������ ��%
�	
�	 �
� ��	��
�	��� ��		����� ,���$ 	�� �����	
w(confx, confu)
�
 ������
� �
�-���
	�
� confx ��	� ��#
�%��	 	
 �
�-���
	�
� confu �� ��-���
� �
��
��3

32 ECAI 2008 Workshop on Configuration Systems

w(confx, confu) =
∑
i∈Fu

simfi
(fi,x, fi,u) ∗ w(fi)

��� ������� 	
 ���
��� ������	�� ��� w(conf1, confu) =
0.126� w(conf2, confu) = 0, 065� w(conf3, confu) = −0.034�
w(conf4, confu) = −0.060� ��� w(conf5, confu) = 0.093� ���
��� ����� �������� ��� ���� �	������� ���	

������	�� ���
pr = as �������� mb = a1 ����� �� me = 1 �������� hd = h2
����� �� gc = no ����� �� ��� od = dr ����� �� �	 ��	!���
��	����"� �	�������� ���	

������	��� pr ��� gc
#�� �� �#��
����#��� ���� pr = i4 ���� ��� ��� gc = g8 �����$��

��� ���� ��	
��
 ������

���
	�� �	�#��� ��	��� ���	����
 %&' ���	

���� ������ ���

������ �	���#����	��� �"������" �	 �	
����� � �	���#����	��
��� ��	�������" ����
���
	� � �	���#����	� c ∈ Conf ����
������� �	 (�	��
���#��� �� #���)� ��	��� Fu ���� �	�����	���
��� #�(�	��
���#��� F̄u� �� ����#����� ��*

Pr(c, u, Fu) = Prbasic(c, F̄u) ∗
∏

j∈Fu

Pr(fj,u = fj,u|Conf)

+� ��� 	�������
	�
#��� ����� ��	�������" Prbasic(c, F̄u) 	

� ������	� �	���#����	� c �� ����� 	� ��� �	�#�����" 	
 ��)�

���#�� !��#�� 	�
���#���
	� ����� ��� #��� ��	��� �	�� �	�
��!� � !��#�� F̄u� ��� ����� ��	�������"
	�
���#�� fj ��!���
��� !��#� ���� �	���#����	� c ��� �fj,c� �� ��
��" ��� ��	�	��
��	� 	
 ������	�� ��!��� ���� !��#�
	�
���#�� fj � ,���� ��	��
������" 	
 � �	���#����	� �� �����
���� �"
#�����"��� ���
����� ��	����������
	� ���
���#�� !��#��� -� ����"
#����	�
count(fj , v) ���� ���#��� ��� �#
��� 	
 ������	�� �� Conf
��!��� !��#� v
	�
���#�� fj * count(fj , v) =

∑K

k=1 eq(fj,k, v).

P rbasic(c, F̄u) =
∏

j∈F̄u

count(fj , fj,c)

K

-� ������ ��� �	����� 	
 ����� ��	�������" �" ��!��� ����

���#�� !��#� �#��	�� ���� ������	#� �	���#����	�� ��!�
���
�#�� !��#�� ������
���
#
 �������� Δ� �dfj

(fj,u, fj,a) ≤ Δ��
��� �#��	�� �� ������ �� ���
 (1−dfj

(fj,u, fj,a))2 �	 .#��(�"
������ ��� ����������� ���� ��� �������� ���������� -� �����
�#��	�� sfj

(x, y)

sfj
(x, y) =

{
(1 − dfj

(x, y))2, �
 dfj
(x, y) ≤ Δ

0, 	��������

/���������� ����� �� ��	���������� ��.#���� ���� ��� �#
 	

��	���������� 	
 �������� !��#�� �� �� ��#�� ��� �#
 	
 �#��	���

	�
���#�� fj ��!��� ��� !��#� ���� �	���#����	� c ��� �fj,c� ��
��!���� �" ��� �#
 	
 �#��	��� ��!�� �	 ��� !��#�� �� �	
��� 	

fj ���� ����� �� �� ����� 	�� ������	� �	���#����	�� �����
	��

Prbasic(c, F̄u) =∏
j∈F̄u

∑K
k=1 sfj

(fj,c,fj,k)∑
v∈dom(fj)

∑
K
k=1

sfj
(v,fj,k)∗min(1,count(fj ,v))

��� ����� ��	�������" �� �������� ���� � ,�"����� �������	�

	� ��� #��� ��	��� u �	 ��!� ��� !��#�� ������" ��������� ��!��

��� �������� ������	���
∏

j∈Fu
P (fj,u = fj,u|Conf)� P (fj,u =

fj,u|Conf)� �� ������ �	 �� ��
�����
��� %�' �	 ������
��0� ��	�������" ����#����	�� �!�� �� ���� 	
 ��		�
�� ��
�
����� ���
�����
��� ���#
�� m !���#�� ��
���� ���� ����
���� ��	�������" p ���� �#�
��� ��� ����
���	� 	
 ��	������
��"� mest(Nc, N, p, m) = Nc+mp

N+m
� -� ����" ���
	��	����
�

����
��� ����
�����* �� ��� �#
��� 	
 1�����
����2 Nc �� ���
�#
��� 	
 �#�� ������	� �	���#����	�� ���� ��!� �.#�� !��#�
�fj , u� �� ��� #��� ��	���
	�
���#�� fj ����� ���������� ���
���� ��!� ��� ��
� �	���#����	� ���� ������� �	
���#��� �F̄u�
���� ��� #��� ��	��� �	�� �	� ��!� � !��#�3 �� ��� �#
��� 	

��� ��
���� N �� ��� �#
��� 	
 �#�� ������	� �	���#����	��
���� ��!� ��� ��
� �	���#����	� ���� ������� �	 ��	��
���
�#��� �F̄u� ���� ��� #��� ��	��� �	�� �	� ��!� � !��#�3 ���
$�
�����
��� !���#�� ��
��� ����
����� ��� p = 1/K� ���
m = K�

∏
fj∈F

P (fj,u = fj,u|Conf) =

∏
fj∈F

mest(eqcfgsm(c, F ∪ fj , fj , fj,u), eqcfgs(c, F), 1/K, K)

eqcfg(i, j, F) ����� �
 ������	� �	���#����	�� i ��� j ���
�.#�� ���� ������� �	 � ��� 	

���#��� F � +� ���#��� 1 �4 ��	�
���� i ��� j ��!� �.#��
���#�� !��#��
	� ���
���#��� f ∈ F �
5�������� �� ���#��� 0�

eqcfg(i, j, F) =

{
1 �
 ∀f ∈ F : eq(ff,i, ff,j) = 1
0 	��������

eqcfgs(c, F) ���#��� ��� �#
��� 	
 ������	� �	���#����	��
���� ��� �.#�� �	 �	���#����	� c ���� ������� �	 � ��� 	

���
�#��� F � eqcfgs(c, F) =

∑K

k=1 eqcfg(c, k, F)�
eqcfgsm(c, F, fj , v) ���#��� ��� �#
��� 	
 ������	� �	����

#����	�� ���� ��� �.#�� �	 �	���#����	� c ���� ������� �	
� ��� 	

���#��� F � ��� ����� ��!� !��#� v
	�
���#�� fj �
eqcfgsm(c, F, fj , v) =

∑K

k=1 eqcfg(c, k, F) ∗ eq(fj,k, v)�
+� 	#� ���
���� ��� ����� ��	�������" 	
 conf5 ���� ��� 	����

����
	�
#�� %&' �� ����$�6� 7 ��8 9 ��� 9 ��� 9 ��8 9 ��� 9 �� �
����#�� fpr = i4 ��	 ��
��� 	���� ���
�
	� ����� ��	�������"
��� ��� ����� ��� ����� ��8 ����� ��� ����� ��� �� ����� -���
	#�
	�����
	�
#�� ��� �� ������ Δ7 ��: ���" ���* ��8�$
�	
�� ���: ����� ���:������ ��888 ����� ���: ���� �� �� ����
7 �����8 ∏

j∈Fu
P (fj,u = fj,u|Conf) = mest(1, 1, 0.2, 5) ∗

mest(0, 1, 0.2, 5) ∗ mest(0, 1, 0.2, 5)� ;	� ���
����
	� ���
���� ���
 Nc = 1� ����#�� �	���#����	� conf5 ��� vi = sd
<#�� �� ��� #��� ��	���� ��� ����� ��� �	 	���� �.#�� �	��
��#����	�� �	 conf5 ���� ������� �	
���#��� ������
�	

#��� ��	���� ��� ���	�� ���

	� ph ��� Nc = 0� ����#��
conf5 ��� ��4����� !��#�
	� ph ���� ��� #��� ��	��� u� conf5

���	
�� ��� �	���#����	� 	
 ��	��� ����� ����
��� ����=��6�
��#� ��� !��#� ��� ���	

�����* pr = i4� mb = i1� me = 2�
hd = h9� gc = g8� ��� od = dw�

� ������� ��� �
�

� ��
�

��� ����� 	
 %&' �������� � ���	

����� �
���
������	�
	�
	������ >? �	���#����	� ��� #�����"��� ���	

������	� ���
�	����
�� -� �������� ��� ���	

������	� ���	����
� 	
 %&'

ECAI 2008 Workshop on Configuration Systems 33

�� ����� �� �� 	�
� �� �	�� ���� 	���
�� ��� 	������ �� ���
����	��� ������� 	�� ����
	���� ������ �
�����
��� ��� ������
�� ��
	
����� �
���������� �� �	�� ���� 	���
�� ��� ������ ��
������������ ����� �� ��
� 	

�� ���������	����� ����� 	��
���������� ���� ��� ����� ��� �� �
������ ���
��������� ���
������
�� ��� ��	

	���� �� �
� 	����	�� �	� ��� ���� ����
�
����
� �� ��� �
� ��

 �� 	 ������ ���
� �� �
�
�� �����

��� �������
���� �� !"# �������� 	� 	����	�� �� ������	��
�	����	��� ��	������ ���� ������	��� ��
���� ���� ��� ��	
 ��
	�	�� ������$�� ��	���� ��������� �� ��� ��� ���$�
�	����
����
��� ���
��� 	
������� ��� �	
�

	���� ��	���� ������
���� �	��� ���� 	���
�� ��������� ���
��
��� �
� ���� ���
�	�� ���� 	���
�� ����	��
����� �� ��
������� ��� 	
����� ����
����
�� 	� 	����	�� �� ��� �	
�

	���� �� 	�	��	����� ��� ���
������$�� ��	���� ��������� �� ����� �� ������� ���� ��� ���
�
������ ������������ %� ���	�
� 	�� �������� ���	����� ���
�����	
��� �� ��	���� �� ��� ��� 	�	����� �&���� ��� �����
�
������ ���
��������� '�� �� �
� �	(�� ��	
� ��� �
�
�� ���
��	��� �� �� ������	�� ����	����� ����� 	

�� ��� �	
�

	����
�� �����	
 	�	��	����� �� ��� �	�� �� ���������	����� �	��
��	

� ������������ ���� ��� ����� �
������ ���
���������

 !)# ������� 	� 	����	�� �� ��� 	��
��	���� �� �	����	���
��	������ ��� ����
�� ���$�
�	���� �	���� ��� 	
����� ���
��
�� ����� 	����	�� �� ��� �	��� �� 	 �����
���
 ����
�� ���
��
�
�� ����� ����	��� ����
	������ 	�� ���������� �� ��� �	���
�� ����
� ��
	
��� ��
	������ *���	��� �� ��� 	����	�� ����
������ �� ���� �	���� ��� 	
����� �� ��� �	�� ���� 	���
��
����	��
����� ����� ������� 	� �����	���� �� ��� ���� �������
��� ����
	� �	����

+	�	������ �� ����������� �� ���������	����� ���� ���
����� �� 	� �,������ ��	���	
� ���$�
�	���� �� 	� ������	��
������ -� �	��� ����� ����� �,��� ����������� ���$�
�	����� ���
�
������� �
� ����� 	�� ������	���
� ���� ��� �����	
 ��� �� ���
�
��������� ������������� �,�
	�	����� �	�� �� �� ���������
.��� ����	� �
�� �,�
	�	����� ���

� �	�� ���� 	���
�� ����
��	
 ����	���� �� �,������ ��	���� �������
��� ��� ����
���
����� �� ���� 	��	 ��

 ��
� �� �,������ ���� ��
	��� �� ���
��������	���� �� �,�
	�	����� !!� /#�

0� �������� �� 	��
� 	 ����
	���� ������ ��	� 	
���	��
��	

� ���������� ��� ����
	���� �� ��	�
�� �	

�� �	��� ��
�
	���$�	���� �
������ �� ���$�
�	������ ���� 	����	�� �	�
�������	
 �� ������� ��� �
	
��� �� ������$�� �	��� 	�� ��	�
�
�� ��������� 1������� �&���� �	�� �� �� �������� �� ��	

	��
��� �������� ������� ������ ��� ����� ��
��� ��
����� �� ���
��������� ���� �
������ �� ���� �����,� �� ������� �
	���$���
���

� �� �	��� �� ��� ���
� ���$�
�	�
� ����
��� �� ���

��
����� �
��������������$� �
	���$��� �� 	��
��� �� ������� ����
	��
�	�� ����
	���� ��������

2����$�
�	���� �� ����
��� 	�� �������� ��

� ����$� ����
������	
�3�� ���������	���� �
������ ��� �,	��
�� �� ���
��
	��� 	�� $�	���	
 ���	��� ���
	���� �� ����� �� �������
	
�
�� �
������ ���	��3	����� ��	��� ������
��� ��
	���������
�� �
����������� -� ���

� �� ������
� ��
��	�� ��� ���$��

��� ��

���� �������������
� ���
� 	������� ��

����� ��	�
������
�� �
�������	
 ��������� ����� �� ��	������ �� �
��
���� �����	��
	
 ������ ����� 	�� ���� �
������� ����� 	��
������ ��� ���
� �� ��� *'4+'4 ���(����

� �������	���

-� ���� �	��� �� �	�� ����� ��� �������	
 ����$��� �� �����
��	���� �	����	���5���������	��� ���������	���� ���� ����
$�
�	���� ������
������ ���� ������	���� 	

��� ��� ��� �����	�
���� �� �������
	
�3�� 	�� ������	
�3�� ����
�� 	�� �������
�&������� ����� ������
����� ���� ���	� �������	
 ��� ���
�
���� ��� ����	

�� �	�� ����
���� ���������� ����� ����
�����
���� ���� ����������� ����
��� 	�� �������� $����� �����
������ 	�� ������ ��� ���������	���� 	����	�� ���������
�� ���� �	��� �� 	 $��� �
� ������	�� ���� ���	��� ������	
�
�3�� ���$�
�	���� ������� ����� ���� 	�����
� �
�����
����
�� ���������� ������
����� ����������

���
�����

��� �� ���	
��
���
�� �� ��������� ����
�� ��� ���� �����
����
�� ��
�		����� �����	��
 ������ �� ��� ��
�� �� ���
��
��
!����"�� ����������#� ��������� 	��
	�	 ���
����
��� ����
��	��	��
��� ��� ��$%&� '()*')+� $,--.&�

�,� /� 0�
�1�� 0� 2�����1�
�� /� 3������1�� ������"��� "
���
��
�����#� �� ������
�	�
���� �$�&� ,'*(,� $�++%&�

�(� 4� 0��1�� �3�������� "
��� 4�
�		����� 5����	�#� �����
������
	 �� �
��	�� 	�� ������	�
�� �������� ��$(,&� $,---&�

�)� 4� 0��1�� �6�"��� 4�
�		����� 5����	�� 5�����
�� 7�!��
�	����#� ���� ����
�� 	�� �������	���� �����	��
��� ��$)&�
((�*('-� $,--,&�

�.� 4� 2������� �� ����
������ 4� 8������
�� �� 4�������	�
�7��
�
��� ��" "
���
��9���
���� ���� ��
�		���
�����

��
������ "
��� ���!#� �� �!"#$ %��&�'(��)��������	�
�
�� 	�� *�����	�
+	�
��
� �����(� :
�
�
� 5!
��� $,--,&�

�%� ;� 7	��� 2� 0���1��� <� 0�������� ;� 8���� =� >�������
<� 4
�	��� :� 5>��1�� �� ?����
�� 5� ;��"��� �2��9���

���� �� ����
�		���

���� 5����	� �� 3/3��#� �� %��&�'��
�� ���,���	�
��� !!� �-.*��-� 5�
������ 2
�������
� $�++%&�

�'� �� @��������� �� @������
�� A� <
��

��
�� :� 5��	!�
���� �2��������
� "
��� A�
������ �� 2��9���
���� 3����
���� 0
���#� ���
,�
	� ������
������ �$�.,&� ,�(*,()� $,--)&�

�B� �� @��������� �� @������
��
�� C� 5
�	��� ����	�� �4�
�	
	����� �����	�#� ���� ������
���� ������������
	� ����� ��
)���������� �������� ��$(&� $,--'&�

�+� �� @��������� 3� /�
1� 3� 5�
"��
�� >� D

�
�� ���� ���

9�
�
�
� �����
�� �
��� ��!!��� �������	���#� �� ����� !!�
�%+,*�%++� $,--'&�

��-� E� @�
�1�� >� 3�����
�� :� 5
������� �2�	!��	������ 	
��

����	��
���� ����1��� ���� ����
�		�������#� -����	� ��
*������ ����.	�
�� 	�	������� �����
�	���� $,--B&�

���� �� @������
�� �7��	��
���� �� 5!������ 7�!�
�
�����#� �� /0th

������	� ���������� �� ���
,�
	� ������
����� 1���� $##23�
����� �� :F����
�� 3� C��� !!� B�(*B�'� ?
���
�
� 5!
���
$,--)&�

��,� C� �������
�� :� 4���� �7�!�����
� "
���
��9���
����#�
�� /4�' ������	�
��	� ���������� �� ���
,�
	� ������
������
����	� �� !!�)*�-� /<2�/� $,--�&�

��(� �� 6
��"�
�� 3�0� :���
�� �>�������
� 2������
����
��
>��������
� �� A����
� :
�1��!�

��� ��� 4��� �� 7��
�����

4�
�		���
���� ������#� -����	� �� �������� *���'������
��$�&� '.*+�� $,--(&�

��)� 2� 6�G	
�
�� 0� 7� 3
��� �?
����� ��� �
��� :
��
��
��	��
���� �� 	
��
��������H#� -����	� ��)��	
�
��� ��$)&�
)+�*.�(� $�++B&�

��.� :�<� >
��
��
�� A� 0������� �2������ "
��� ��
�		���
����
�����	�#� �'� ��	��
.� %��5 ��'��� 	�� ���	���
�� �� %��
*�����	�
+	�
��� ������� 6����
� �������� ��
����� �����
$,--%&�

��%� 6� ������ 2� 2�
���
�� 5� 2�
��� ��!!�����

�� "
��� ��

������ ��� !����
�
��9���
���� �� 	
��
����	��
���� ����
���	����#� �7���� ���(�
�' ����
�(� ��$)&� +�(*+,.� $,--.&�

��'� A� ;�����
�� �� :
������� �/	!����� 6������������ A��
�
�
� @��
�����#� -����	� �� ���
,�
	� ������
�����)���	��'�
�� �*()� $�++'&�

34 ECAI 2008 Workshop on Configuration Systems

Beyond Valid Domains in Interactive Configuration
Tarik Hadzic and Barry O’Sullivan1

Abstract. A key requirement in interactive configuration is the ca-
pability of the configurator to prevent the user from selecting options
that do not lead to valid configurations. Each time the user selects
a value for an attribute of a configurable product, the configurator
should respond by computing and displaying only the valid domains
for each unassigned attribute. In this paper we argue that richer forms
of user-configurator interaction can take place. Showing only valid
domains is unnecessarily restrictive if it is possible to compactly
view the solution space over several variables simultaneously. This
is particularly the case when the entire solution space is represented
by a tractable data-structure, such as multi-valued decision diagrams,
when multi-dimensional projections can be efficiently computed. We
present an approach to compactly presenting the space of solutions
to a configuration problem using a set of Cartesian products of valid
domains. We show that even when a complete representation is too
large, by using techniques from this paper it is possible to adequately
represent the solution space with high compression and small sacri-
fices in soundness.

1 Introduction

Presenting valid domains to a user at each step in an interactive con-
figuration setting is often presented as the key criterion for a success-
ful product configurator. In this setting, each time the user assigns
a value to a product attribute, the configurator responds by calculat-
ing and displaying a set of values for each of the unassigned variables
that are consistent with at least one solution. By selecting values from
such valid domains, a user is guaranteed backtrack-freeness (every
selectable value is part of at least one solution) and completeness
(every solution is reachable by selecting valid values only).

However, a challenge with this approach is that computing the set
of valid domains is often NP-hard, particularly when the configura-
tion problem is represented as a set of constraints. To mitigate this
complexity, in order to guarantee efficient online responses to user
interactions, knowledge about the product to be configured is of-
ten compiled in an off-line phase, prior to user interaction, into a
tractable representation such as an automaton [AFM02], binary de-
cision diagram [Bry86] or multi-valued decision diagram [HA06].
User interaction has guaranteed worst-case response times in the size
of compiled representation.

In this paper we argue that compiled representations allow for
much richer forms of decision support than those currently utilized.
We argue that we should move away from valid domains computation
towards richer forms of solution space visualization and interaction.
In particular, showing valid domains is an unnecessarily narrow form
of communication between a user and a configurator, if it is possible

1 Cork Constraint Computation Centre, University College Cork, Ireland.
Email: {t.hadzic,b.osullivan}@4c.ucc.ie

to compactly view the solution space over several variables simul-
taneously. This is especially the case when the entire solution space
is compiled into a tractable data-structure, such as multi-valued de-
cision diagrams (MDDs), where multi-dimensional projections can
be efficiently computed. In other words, if we already have informa-
tion and it can be displayed conveniently, why hide it behind valid
domains?

In this paper we present an approach to compactly visualizing the
space of solutions to a configuration problem using a set of Cartesian
products of valid domains when the solution space is represented as
an MDD. We evaluate the approach on a real-world configuration
instance, and show that even when a complete display of the entire
solution space is too large to show to the user, by applying our tech-
niques it is possible to achieve adequate compression of the data for
small sacrifices in soundness.

Our Cartesian products representation is related to [HF92], where
a cross product representation of the constraint satisfaction problem
was utilized during search for a single or all solutions. However, we
use Cartesian products as a visualization device rather than a reason-
ing mechanism.

In Section 2 we present the background work. In Section 3 we
illustrate the main idea of moving beyond the valid domains to using
a set of Cartesian products as a richer interaction device with a user.
In Section 4 we identify algorithmic challenges associated with the
main idea. In Section 5 we present an MDD-based approach for data
compression for the purpose of visual interaction. In Section 6 we
evaluate our MDD-based techniques on a real-world configuration
instance. Finally, in Section 7 we conclude and outline future work.

2 Preliminaries

An interactive configurator assists a user to define a valid configu-
ration by providing feedback on valid options for product attributes.
Knowledge about the product or service to be configured can be con-
veniently represented as a constraint satisfaction problem (X, D, C)
where configuration constraints C = {c1, . . . , cm} are posted over
variables X = {x1, . . . , xn} with domains D = {D1, . . . , Dn}. A
solution to the CSP problem corresponds to a valid configuration.

In an interaction step where a subset of the variables X ′ ⊆ X
has been assigned, we denote with ρ the current user assignment
ρ = {(xi, vi) | xi ∈ X ′, vi ∈ Di}. The configurator calculates
and displays a valid domain VDρ

i ⊆ Di for each unassigned vari-
able xi ∈ X \ X ′. A domain is valid if it contains those and only
those values with which ρ can be extended to a total valid assign-
ment. We refer to this configurator feedback as a calculating valid
domains (CVD) functionality. It delivers important interaction re-
quirements: backtrack-freeness (user should never be forced to back-
track) and completeness (all valid configurations should be reach-
able) [HSJ+04]. Computing valid domains in fact is equivalent to

ECAI 2008 Workshop on Configuration Systems 35

enforcing generalized arc consistency with respect to conjunction of
all constraints C.

Since calculating valid domains is an NP-hard problem, it is not
possible to guarantee interactive response in real-time. Therefore, a
popular approach is to compile all CSP solutions off-line (prior to
user interaction) into a tractable datastructure, such as an automaton
or a decision diagram, and efficiently compute valid domains using
the compiled representation. In this paper we consider compilation
into multi-valued decision diagrams.

Definition 1 (Multi-Valued Decision Diagram) A multi-valued
decision diagram (MDD) M is a tuple (V, r, E, var), where V is a
set of vertices containing the special terminal vertex 1 and a root
r ∈ V , E ⊆ V × V is a set of edges such that (V, E) forms a
directed acyclic graph with r as the source and 1 as the sink for all
maximal paths in the graph. Further, var : V → {1, . . . , n + 1} is a
labeling of all nodes with a variable index such that var(1) = n+1.
Each edge e ∈ E is denoted with a triple (u, u′, v) of its start node
u, its end node u′ and an associated value v.

We work only with ordered MDDs. A total ordering < of the vari-
ables is assumed and all edges (u, u′, v) respect the ordering, i.e.
var(u) < var(u′). For convenience we assume that the variables
in X are ordered according to their indices. Ordered MDDs can
be considered as being arranged in n layers of vertices, each layer
being labeled with the same variable index. While MDDs in gen-
eral allow edges skipping variable layers in this paper we consider
only MDDs without long edges, i.e. where for each (u, u′, v) ∈ E,
var(u′) = var(u) + 1. It is also a matter of taste whether to ex-
plicitly represent assignments leading to infeasibility by redirecting
them to an additional terminal node 0, or to have only one terminal 1
and not to represent edges for violating assignments.

Every path between root r and terminal 1 corresponds to a unique
solution. We will also consider meta-paths between r and 1, de-
noted as p = (u1, . . . , un+1) where u1 = r and un+1 = 1. Be-
tween any two vertices in a meta-path ui, ui+1, we consider all edges
between them, i.e. we consider a set of values Dui,ui+1 = {v |
(ui, ui+1, v) ∈ E}. A meta-path therefore corresponds to a subset
of solutions:

Sol(p) =

n∏
1

Dui,ui+1 .

We will in general use Sol to denote the set of solutions represented
by an MDD.

3 Compactly Representing Solutions
Showing valid domains for each variable is a narrow way of inter-
acting with the user. In order to completely specify a solution, a user
is forced to consider one variable at a time even when it is possible
to compactly view the solution space over several variables simul-
taneously. The standard calculation of valid domains is a display of
one-dimensional projections Solxi for each variable xi. We argue
that there is no reason to “hide” the solution space behind valid do-
mains. It is often possible to provide a more detailed overview of
the solution space that would allow the user to make comparisons
between available alternatives faster.

In this section we will illustrate the main idea on two toy examples:
T-Shirt configuration taken from [HSJ+04], and Car Configuration
adopted from [AFM02].

Example 1 (T-Shirt Configuration) Consider specifying a T-shirt
by choosing the color (black, white, red, or blue), the size (small,

medium, or large) and the print (”Men In Black” - MIB or ”Save
The Whales” - STW). There are two rules that we have to observe:
if we choose the MIB print then the color black has to be chosen
as well, and if we choose the small size then the STW print (includ-
ing a big picture of a whale) cannot be selected as the large picture
of a whale does not fit on the small shirt. The configuration prob-
lem (X, D, F) of the T-shirt example consists of variables X =
{x1, x2, x3} representing color, size and print. Variable domains are
D1 = {black ,white, red , blue}, D2 = {small ,medium, large},
and D3 = {MIB ,STW }. The two rules translate to F = {f1, f2},
where f1 is (x3 = MIB) ⇒ (x1 = black) and f2 is (x3 =
STW) ⇒ (x2 6= small). There are |D1| × |D2| × |D3| = 24
possible assignments. Eleven of these assignments are valid configu-
rations.

The valid domains for the T-Shirt example are:

color size print
b,r,g,w s,l,m mib,stw

They allow 24 assignments. A user is guaranteed that whatever the
value she selects, there will be at least one remaining solution. By as-
signing certain values and evaluating the available options, she effec-
tively explores the entire solution space. For example, after assigning
size=small, the configurator’s response reduces the valid domains to
a complete solution:

color size print
b s mib

Based on this consequence, a user can change her mind and assign
a different value if desired, or perform other decision-support tasks,
such as asking for an explanation of why certain values are not avail-
able any more, etc.

We argue that it is unnecessary to hide interactions between vari-
ables from a user if the entire solution space can be compactly repre-
sented. All eleven solutions in the above example can be compactly
described in only two table rows:

color size print
b,r,g,w l,m stw

b s,l,m mib

The user is provided with a stronger guarantee: any combination of
values in a row is guaranteed to be a solution. The user can utilize her
perceptual abilities to directly observe the solution space and imme-
diately specify a desired solution. Note how all interactions between
variables and values are directly observable, without the need to first
assign and explore consequences. In particular, it is easy to see that
a small T-Shirt is only available in black and with “Men in Black”
print.

Example 2 (Car Configuration) We are required to configure col-
ors for various parts of a car. There are five variables: x1, . . . , x5

representing bumpers,body,top,doors, and hood. All variables share
the same domain D1 = . . . = D5 = {white, pink, red, blue}.
There are two constraints: bumpers and top should have a lighter
color than body. Doors and hood must have the same color as the
body.

Initial valid domains in the above example are:

bumpers body top doors hood
w,p,r p,r,b w,p,r p,r,b p,r,b

36 ECAI 2008 Workshop on Configuration Systems

They allow 243 solutions, even though there are only 14 solutions.
However, the entire solution space can be exactly represented in only
three rows:

bumpers body top doors hood
w p w p p

w,p r w,p r r
w,p,r b w,p,r b b

Note how constraints over variables can be directly observed.
Body, doors and hood must have the same color. Choices of colors
for bumpers and top are mutually independent.

4 Algorithmic Challenges
In this section we formalize the notions related to the quality of visu-
alization and extract the algorithmic challenges associated with pro-
viding good visualizations. The Cartesian product of the valid do-
mains can be seen as an over-approximation of the solution space
Sol:

Sol ⊆ V D1 × . . .× V Dn. (1)

This visualization device guarantees backtrack-freeness and com-
pleteness by ensuring that each valid domain is a projection of ex-
act solution space onto the corresponding variable, V Di = πi(Sol)
where π denotes a projection operator. In contrast, in the two toy ex-
amples we represented the solution space exactly, by introducing a
set of Cartesian products, each product corresponding to a row in a
visualization table:

Sol =
⋃
i

Di
1 × . . .×Di

n. (2)

An advantage of such a table over displaying (1) is in a stronger
interaction guarantee: any combination of values from a single row,
(v1, . . . , vn) ∈ Di

1× . . .×Di
n for some row i, is a valid solution. A

disadvantage in comparison to (1) is that the number of rows in the
table might be too large to represent and for a user to absorb. Hence,
the quality of representation (2) is directly related to the number of
rows in the table, i.e. the number of Cartesian products in the set. We
therefore formulate our first algorithmic challenge as follows:

Problem 1 (Minimal Row Representation) For a given constraint
satisfaction problem (X, D, C), with solution space Sol, what is the
minimal number of Cartesian products rmin necessary to exactly
represent Sol:

Sol =

rmin⋃
i=1

Di
1 × . . .×Di

n.

Even if we are able to solve the above problem, the required mini-
mal number of Cartesian products rmin might be too large for prac-
tical use. We suggest, therefore, to relax the requirement for ex-
act representation, and instead to require a tight over-approximation
that does not require many rows. We can always satisfy space re-
quirements by taking a one-row over-approximation (1). On the
other hand, we can always achieve desired tightness of the over-
approximation by taking the exact solution space representation (2)
where each row corresponds to a solution. The associated algorith-
mic challenge is to achieve an appropriate tradeoff between the two
conflicting goals.

Problem 2 (Over Approximation of Rows) For a given constraint
satisfaction problem (X, D, C), with solution space Sol, and for

a given maximum number of Cartesian products rmax what is the
smallest over-approximation Solapx:

Sol ⊆ Solapx =

rmax⋃
i=1

Di
1 × . . .×Di

n

i.e. an over-approximation with the minimum number of elements?

An orthogonal way to improving the Cartesian product represen-
tation is to show values for only a subset of variables. Such a subset
could be specified either by a user or a system. For example, a user
might only care about the values of some “interesting” variables. On
the other hand, a system might recognize a subset of “critical” vari-
ables whose assignment is sufficient to completely specify the solu-
tion. In general, for a given subset of variables X ′ ⊆ X , we want to
exactly represent the projection:

SolX′ =
⋃
i

∏

xj∈X′
Di

j . (3)

The smaller the number of variables X ′, the easier it is to represent
the solution space SolX′ . However, some solutions might become in-
distinguishable when comparing over a subset of variables only, and
the number of identifiable solutions could decrease: |SolX′ | ≤ |Sol|.
As a measure of projection quality we take the number of “lost” so-
lutions: δ(X ′) = |Sol| − |SolX′ | and the associated algorithmic
challenge is:

Problem 3 (Approximation by Projection) Given a solution space
Sol, and a maximum number of Cartesian products rmax what is the
subset of variables X ′ ⊆ X yielding a Cartesian product represen-
tation (3) with at most rmax rows, such that projection of solution
space Sol on X ′ variables SolX′ , involves the maximum number of
solutions?

In fact, the research carried in [CO08] already identifies variables
that can be ignored without solution loss. The authors identify func-
tionally dependent variables, whose value is completely specified by
assigning remaining core variables. Finding a minimum-size core ac-
tually helps in addressing the above problem when we insist that the
projection must retain all solutions. In this work however, we are
willing to accept some solution loss δ(X ′) if we can further reduce
the number of projection variables X ′ (and therefore Cartesian prod-
ucts rmax).

Besides the above methods, a number of other methods could be
considered to improve the Cartesian product representation. In par-
ticular, we could exploit preferences over variable value pairs. These
again could be extracted from a user, or could be inherently present
(cheaper price or more memory are always better, everything else
being equal). In this paper, we consider preference shading, i.e. in-
dicating the quality of a choice for an attribute by shading the table
cell with an appropriate color or intensity. If there are more than one
value in a cell, an intensity or color is selected based on the most
desirable value. While we will not discuss this further in the paper,
an example will be shown in Section 6 that uses such a choice.

5 An MDD-Based Approach
In this section we discuss how to address some of the algorithmic
challenges mentioned in the previous section, using multi-valued de-
cision diagrams (MDDs) as an underlying representation of the solu-
tion space. In particular, we discuss several approaches that minimize
the number of rows in a visualization table.

ECAI 2008 Workshop on Configuration Systems 37

It is important to observe that the MDD allows for the immedi-
ate extraction of visual-table representation. Every meta-path in the
MDD corresponds to a Cartesian product, i.e. a row in the visualiza-
tion table. For example, an MDD for the T-Shirt example is shown in
Figure 5 (left) and the corresponding table extracted from meta-paths
is shown in the same figure on the right.

1

b r g w

s m l m l

mib stw mib stw

color size print
b s mib
b m,l mib,stw

r,g,w m,l mib,stw

Figure 1. An MDD for the solution space of the T-shirt example.
There are three meta-paths in the MDD resulting in the visualization

table on the right. Note that this is not the minimal Cartesian
product representation.

The generated table has three rows, while the minimal number
of rows for the T-Shirt example is two (as illustrated in Section 3).
Therefore, the Problem 1 of minimizing the number of rows corre-
sponds directly to minimizing the number of meta-paths in the un-
derlying MDD.

We suggest two techniques for minimizing the number of meta-
paths in an MDD. The first technique is variable reordering, which
is known to dramatically influence the number of MDD nodes. We
are, however, interested in variable orders that minimize the number
of paths rather than nodes. Figure 2 shows an example of how the
reordering of the variables can reduce the path-count.

1

b r g w

s m l m l

mib stw mib stw

stw mib

m l s m l

1

w b r g b

Figure 2. The T-Shirt example with the standard variable ordering (color,
size, print) on the left, and with the new variable ordering (print, size,color)
on the right. Note that the number of meta-paths reduced from three to two.

While in the T-Shirt example reordering of variables reduced both
the number of paths and nodes, note that in general it is not possi-

ble to minimize both numbers simultaneously. A variable ordering
leading to an MDD with the minimal number of paths is not neces-
sarily the ordering leading to an MDD with the minimal number of
nodes. This fact is a generalization of an analogous result that holds
for binary decision diagrams [Weg00].

The second technique we propose for reducing the number of
paths is non-determinization. In an MDD, edges (u, ui, vi) rooted
at the same node u, must have disjoint labels vi. This an impor-
tant requirement that guarantees efficiency of a number of important
queries. However, for the purpose of visualization, where we care
only about the number of paths, this requirement is not necessary. By
allowing overlapping values on outgoing edges, we introduce “non-
deterministic” choices in the decision diagram and we get a structure
that is not an MDD anymore in a standard sense. However, allowing
non-determinization can potentially reduce the number of paths as
illustrated in Figure 3.

1

rw p

br bp r b

wp p r ww

r bp

r bp

w w p w p r

p r b

w w p p r w

p r b

1

p r b

Figure 3. Car configuration example on the left, and after
non-determinization on the right. The number of meta-paths is reduced from

six to three.

Note that projecting an MDD onto a subset of variables can be effi-
ciently implemented using standard projection techniques for binary
decision diagrams. While in theory the size of resulting MDD can be
bigger, in practice it is often smaller. While we do not discuss this
technique further, we used it in the empirical evaluation in Section
6. Finally, the techniques for approximating the number of rows are
currently under development and are part of our future work.

6 Case-Study: Configuring a Digital Camera

In this section we apply the MDD-based techniques of variable pro-
jection, non-determinization and preference shading to a real-world
configuration benchmark of Camera configuration [CO08]. We are
given a catalogue of 112 cameras, each characterized by eight at-
tributes: brand, price, resolution, optical zoom strength, flash mem-
ory, screen size, thickness and weight. Each of the attributes corre-
sponds to a variable.

38 ECAI 2008 Workshop on Configuration Systems

In Table 1 we report the effect of variable projection and non-
determinization techniques. For smaller subsets of variables X ′ we
compute an MDD M with solution space SolX′ . We then apply a
heuristic-based non-determinization on MDD M to generate a non-
deterministic MDD Mn representing the same solution space SolX′ .
We report the number of meta-paths P, Pn and nodes |M |, |Mn| for
both the initial and non-deterministic MDD respectively.

Table 1. Table illustrating solution loss and row savings by projecting
variables for the Camera instance. Column X′ indicates indices of variables
in the scope of projection. Entry 1− 8 is a shorthand for indicating that all

variables {x1, . . . , x8} are in the set. Column |SolX′ | indicates the number
of solutions in a projected MDD, Pn and P refer to the number of paths in
the non-deterministic and initial MDD, while |Mn| and |M | indicate the

number of nodes in the non-deterministic and initial MDD.

X’ |SolX′ | Pn P |Mn| |M|
1-8 112 100 106 388 394
1-7 112 94 103 317 325
1-6 112 87 99 189 200
1-5 112 83 91 143 149

2,3,4,5 111 75 92 116 121
1,2,4,5 110 61 64 79 84
1,2,3,4 109 73 78 78 80
2,4,5 108 49 54 66 65
2,3 91 32 32 34 34
2,5 88 24 24 26 26

We can see that by projecting onto the subset of functionally in-
dependent variables [CO08], we have compression without solution
loss. For example, projecting onto x1, . . . , x5 still yields 112 solu-
tions since the values of variables x6, x7, x8 are completely spec-
ified by assignments to x1, . . . , x5. Furthermore, we can see that
even when we start loosing solutions, we can select projection vari-
ables X ′ in a way that yields a very good tradeoff between solu-
tion loss and meta-path reduction. For example, by projecting onto
variables x2, x4, x5 we get an MDD with only 49 meta-paths, while
loosing only four solutions. it can be also seen that the effect of non-
determinization is moderate but still noticeable. Further experimental
evaluation is needed to fully understand the potential of this tech-
nique.

Based on the results in Table 1, we generated a visualization ta-
ble for the Camera catalogue projected onto variables x2, x4, x5, i.e.
price, zoom strength and flash memory. Furthermore, since all at-
tributes have a natural preference structure (e.g. more/less is better),
we implemented a simple preference-shading scheme and generated
the same table where all cells are shaded with different intensities of
the gray color to indicate the quality of the value. The resulting vi-
sualization tables are shown in Figure 4. The entries in the tables are
sorted with respect to ascending price. The lighter intensity indicates
higher quality. In cells with more than one value, only the best value
is shown and ”+” or ”-” is appended to indicate that there are other
values of lesser quality (which are greater or smaller depending on
what is considered worse for the attribute).

We can see how shading allows us to immediately spot interesting
values. For example, the greatest amount of flash memory (256MB)
can be obtained in a middle price range of 299.5$, while the most ex-
pensive camera (675.99$), in comparison, offers only a small amount
of flash memory(16 MB). The same holds for the zoom strength. A
high zoom factor 10 is available already starting from 293.99$. How-
ever, it is hard to find both the high flash memory and optical zoom
for the same price. Some “lighter table lines” do stand out. For exam-
ple, a camera with 32MB of flash memory an optical zoom of factor
10 can be purchased for 299.95$.

7 Conclusions and Future Work
In this paper we argued for moving beyond displaying valid domains
as a main form of communicating with a user in interactive configu-
ration. We suggested a richer interaction framework, based on visu-
alizing the solution space through the set of Cartesian products. We
proposed several techniques that could improve the Cartesian prod-
uct representation for larger instances, and evaluated our approach
on a configuration benchmark.

In future, we plan to further implement and test the techniques
indicated in this paper, as well as develop new techniques for im-
proving Cartesian product representation. In particular, we plan to
develop MDD-based techniques for row approximation based on ag-
gregating highly related values.

7.1 Acknowledgments
Tarik Hadzic is supported by an IRCSET/Embark Initiative Postdoc-
toral Fellowship Scheme. Barry O’Sullivan is supported by Science
Foundation Ireland (Grant Number 05/IN/I886).

REFERENCES
[AFM02] J. Amilhastre, H. Fargier, and P. Marquis. Consistency restoration

and explanations in dynamic CSPs-application to configuration.
Artificial Intelligence, 2002.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, 1986.

[CO08] Hadrien Cambazard and Barry O’Sullivan. Reformulating table
constraints using functional dependencies - an application to ex-
planation generation. Constraints, 13(3), April 2008.

[HA06] Tarik Hadzic and Henrik Reif Andersen. A BDD-based Poly-
time Algorithm for Cost-Bounded Interactive Configuration. In
Proceedings of AAAI’06, 2006.

[HF92] Paul Hubbe and Eugene Freuder. An efficient cross-product rep-
resentation of the constraint satisfaction problem search space.
In Rina Dechter, editor, Proceedings of AAAI-92, AAAI Press,
pages 421–427, 1992.

[HSJ+04] T. Hadzic, S. Subbarayan, R. M. Jensen, H. R. Andersen,
J. Møller, and H. Hulgaard. Fast backtrack-free product con-
figuration using a precompiled solution space representation. In
PETO Conference, pages 131–138. DTU-tryk, June 2004.

[Weg00] Ingo Wegener. Branching Programs and Binary Decision Dia-
grams. Society for Industrial and Applied Mathematics (SIAM),
2000.

ECAI 2008 Workshop on Configuration Systems 39

Price($) Zoom Flash (MB)
109.99+ 1 16
129.99+ 3 16
139.99+ 3 12
149.95 3 32-
149.99 4 16

149.99+ 3 16-
179.95 3- 16
179.99 3 22
199.95 3 32-
199.99 3 23-
199.99 4- 16

212.99+ 6 14
215.99+ 3 32
249.95 3 24-
249.99 5 24
249.99 3 32-

293.99+ 10 13.4
293.99 3 16

293.99+ 3.6 16
299.95+ 10 32
299.95 5 32
299.95 3 256-
299.99 10- 16
299.99 5 32,8
299.99 3 32-
319.99 10 10
329.95 3 64
329.99 10 21
329.99 3 20
349.95 3 32-
349.95 1 32
349.99 12- 16
349.99 5 17
375.99 2.4 16

391.99+ 12 16
399.95+ 12 32
399.95 10 32-
399.95 5.8 32
399.95 3 58-
399.99 12- 16
399.99 4 32-
399.99 3 32-

401.99+ 3.5 23
449.99 3 25
499.95 10.7 10
499.99 3 32-
569.99 4 32
599.99 6 32
675.99 10.7 16

Price($) Zoom Flash(MB)
109.99+ 1 16
129.99+ 3 16
139.99+ 3 12
149.95 3 32-
149.99 4 16

149.99+ 3 16-
179.95 3- 16
179.99 3 22
199.95 3 32-
199.99 3 23-
199.99 1,4 16

212.99+ 6 14
219.99+ 3 32
249.95 3 24-
249.99 5 24
249.99 3 32-

293.99+ 3.6 16
293.99+ 10 13.4
293.99 3 16

299.95+ 10 32
299.95 5 32
299.95 3 256-
299.99 10- 16
299.99 5 32-
299.99 3 32-
319.99 10 10
329.95 3 64
329.99 10 21
329.99 3 20
349.95 3 32-
349.95 1 32
349.99 12- 16
349.99 5 17

375.99+ 2.4 16
391.99+ 12 16
399.95+ 12 32
399.95 10 32-
399.95 5.8 32
399.95 3 58-
399.99 12- 16
399.99 4 32-
399.99 3 32-

401.99+ 3.5 23
449.99 3 25
499.95 10.7 10
499.99 3 32-
569.99 4 32
599.99 6 32
675.99 10.7 16

Figure 4. Both tables represent projection of the Camera catalogue on three variables: price, optical zoom and flash. There are 108 solutions in the table,
presented in 49 rows. Corresponding MDD has 66 nodes. The number of rows is reduced from 100 to 49 by loosing only four solutions. If there are more than
one value in a cell, only the “most preferred” value is shown, and “+” or “-” is appended to indicate that there are other values of lesser quality. The table shows

the results of applying the preference-shading technique on the table on the left.

40 ECAI 2008 Workshop on Configuration Systems

Towards an association of product configuration
with production planning

M. Aldanondo1, E. Vareilles1 M. Djefel1 and Paul Gaborit1

 Abstract. This communication presents some works relevant to the

possibility of coupling together interactive product configuration
tools with process planning tools in order to pass decisions made
from one to the other. The first section introduces the problem and
the general ideas of the proposed solution. Two constraints based
models, relevant to product configuration and process planning, are
presented. Then first investigations for coupling these two models
and associated problems are discussed. An example illustrates our
proposal through out the paper.

 1. INTRODUCTION
 The aim of this communication is to present the first results of a

study dealing with the development of an aiding system that will
simultaneously allow interactive configuration of a product and
interactive planning of its production process. It seems rather logical
that on the one hand, product configuration decisions have strong
consequences on the planning of its production process and that on
the other hand, planning decisions provide hard constraints to
product configuration. Therefore, we propose to associate these two
problems in order to allow (i) the propagation of the consequences
of each product configuration decision toward the planning of its
production process and (ii) the propagation of the consequences of
each process planning decision towards the product configuration.
This should reduce or avoid planning impossibilities due to product
configuration and configuration impossibilities due to production
planning. This problem originates from a French national funded
project called ATLAS whose purpose is the development of an open
source software able to help industrialists to design (and not only
configure) a product and its associated project simultaneously, by
passing decisions made from one to the other in order to try to avoid
manual repairs.

Figure 1. Domains of product configuration and production
planning - from the paper (Lindemann U., 2007 [4])

In the configuration community, many authors (among them [5] or
[6]) have shown that product configuration could be efficiently
modelled and aided when considered as a Constraints Satisfaction
Problem (CSP). In a same way, authors interested in scheduling
(such [7] or [8]) have shown that project planning could be also
modelled and aided when considered as a CSP. A CSP is a triplet
{X, D, C} where X is a set of variables, D is a set of finite domains
(one for each variable) and C a set of constraints linking the
variables [9]. The variables can be either discrete or continuous. The
constraints often called compatibility constraints define the possible
or forbidden combinations of values for a set of variables thanks to:
lists of compatible values, mathematical formulae or comparison
operators (>,<,=). Given these elements, we propose to consider
simultaneously configuration and planning problems as two
constraint satisfaction problems. In order to propagate decision
consequences between the two problems, we suggest to link the two
constraint based models relevant to configuration and planning as
shown in figure 2.

As far as we know, this kind of problem has not been addressed by
the configuration community. In the design community, for more
than fifteen years, many works around: Axiomatic Design proposed
by Suh in 1990 [1], Design Structure Matrix proposed by Stewart in
1981 [2], or Function Behaviour Structure proposed by Gero [3],
have proposed different domains or views (customer, functions,
requirements, behaviour, physical, process, resource…) in order to
characterize product development. A recent paper from the DSM
community [4] proposed a mapping of the four domains: functions,
components, process and resources (as shown in figure 1 from [4]).
Our propositions are based on these four domains and we associate
(i) the function and component views with the product configuration
and (ii) the process and resource views with the planning of the
production process.

 Configuration constraint model Planning constraint modelConfiguration constraint model Planning constraint model

Figure 2. Association of configuration and planning models

 1 Université de Toulouse – Mines Albi - Centre de Génie Industriel,

 France, email : {aldanondo, vareilles, djefel, gaborit}@enstimac.fr

ECAI 2008 Workshop on Configuration Systems 41

2.3 Example relevant to Product Configuration. The communication is therefore organized as follow. Product
configuration is first addressed and planning issues are discussed.
The association of the two constraints models are then investigated
and discussed. A detailed example run through out the paper.

The Figure 3 shows the configuration model of our example. The
product taken for example is a very simple crane.

 In its functional or descriptive view (left part of Figure 3), the

product can be defined with four configuration variables: 2 PRODUCT CONFIGURATION
 1. V_length, where “V” stands for vertical, the height of the crane

with two possible values 4 and 8 meters, This section concerns the definition of the configuration problem
that we address. The problem is first defined, then the constraint
model is described with propagation techniques. The description of
the example finishes this section.

2. H_length, where “H” stands for hrozontal, the width of the
crane with two possible values 2 and 4 meters,

3. M_load, the maximum load with two possible values less than
one ton between 1 and 2 tons,

 4. Ctr-Cab, modulating the existence of a control cabin with two
values “yes” and “no”. 2.1 Configuration Problem Description.

 Three constraints reduce the solution space and exclude
combinations of values (doted lines between variable values): From previous works achieved concerning configuration, it seems

that some common features defining configuration could be: 1. (V_length = “4m”) incompatible with (H_length = “4m”) a
crane cannot have the same height and width 1. hypothesis: a product is a set of components,

2. given: (i) a generic model of a configurable product able to
represent a family of products with all possible variants and
options, that gathers (1) a set of component groups (2) a set of
product properties and (3) a set of various constraints that
restrict possible combinations of components and property
values ; and (ii) a set of customer requirements, in which each
requirement can be expressed by a selection (or a domain
restriction) of a component or a property value,

2. (M_load = “ 1t << 2t ”) incompatible with (H_length = “4m”)
the maximum load is not compatible with the larger width

3. (V_length = “4m”) incompatible with (Ctr-Cab = “yes”) a
height of four meters forbids the presence of a control cabin.

3. configuring can be defined as "finding at least one component
set that satisfies all the constraints and the customer
requirements".

 We associate previous properties with some kind of product

description that matches the “function” domain introduced in section
1. Component and component groups are associated with the
physical or component domain of section 1. We consider (for
simplicity) that the properties and the component groups have
symbolic values, for examples, value of the property “length” can be
“2m”, “4m”, “8m”…, value of the component ”engine” can be
“E_lp” or ”E_hp”.

 2.2 Constraint Model and Propagation Techniques

 Each group of components and each product property is associated

with a configuration variable. Each component and each property
value corresponds with one value of the variable. The constraint
represents the allowed (solid lines of figure 3) or excluded (dot lines
of figure 3) combinations of components and property values. The
Dynamic extension of the CSP, DCSP proposed by [10] and
frequently called Conditional-CSP, introduces: (i) Initial variables:
variables that exist in any configured product, (ii) Compatibility
constraints: equivalent to the CSP constraints defined in [9] and (iii)
Activity constraints (arrows on figure 2): allowing to control the
variable existence in the following ways: (1) Require: a specified
value of a variable "X" implies the existence of variable "Y", (2) Not
Require: a specified value of a variable "X" implies the non existence
of variable "Y". DCSP allows to modulate the existence of any
variable corresponding with a group of components or a product
property.

2m / 4m

4m /
8m

Load
]0, 2] t

Control
cabin :

Allowed combinations

Excluded combinations

Function view

V_length
4m
8m

M_load
< 1t.

1t. << 2t.

H_length
4m
2m

Ctr-Cab
‘ yes ’
’no ’

Component view

H_Struct
H4_n
H2_n

Engine
E_lp
E_hp

Cab
Cab_hp
Cab_lp

V_Struct
V4_n
V4_s
V8_n
V8_s

2m / 4m

4m /
8m

Load
]0, 2] t

Control
cabin :

2m / 4m2m / 4m

4m /
8m

Load
]0, 2] t

Control
cabin :

Allowed combinations

Excluded combinations

Function view

V_length
4m
8m

M_load
< 1t.

1t. << 2t.

H_length
4m
2m

Ctr-Cab
‘ yes ’
’no ’

Allowed combinations

Excluded combinations

Function view

V_length
4m
8m

M_load
< 1t.

1t. << 2t.

H_length
4m
2m

Ctr-Cab
‘ yes ’
’no ’

Component view

H_Struct
H4_n
H2_n

Engine
E_lp
E_hp

Cab
Cab_hp
Cab_lp

V_Struct
V4_n
V4_s
V8_n
V8_s

Component view

H_Struct
H4_n
H2_n

Engine
E_lp
E_hp

Cab
Cab_hp
Cab_lp

V_Struct
V4_n
V4_s
V8_n
V8_s

Figure 3. Product configuration model

In its physical or component view (right part of Figure 3) the model
shows four groups of components:
1. V_Struct, the vertical structure gathering 4 physical

components combining different acceptable loads and lengths:
“V4_n”, “V4_s”, “V8_n”, “V8_s”,

As we target interactive assistance, constraint propagation is
obtained thanks to filtering algorithm. As we have reduced the
definition domain of the configuration variables to symbolic values,
simple arc consistency techniques, defined for discrete CSP and
DCSP extension, are used.

2. H_Struct, the horizontal structure gathering 2 physical
components according to its length “H2_n”, “H4_n”,

3. Engine, the crane engine gathering 2 physical components with
two different power “E_lp”, “E_hp”,

42 ECAI 2008 Workshop on Configuration Systems

Interactive planning corresponds with the propagation of all the
constraints in order to reduce the definition domain of all temporal
parameters, resource parameters and to select the path in the case of
“XOR” nodes.

4. Cab, the control cabin gathering 2 physical components
according to the engine power “Cab_lp”, “Cab_hp”.

In this physical view, a single constraint associates the possible
engine and the control cabin (solid line between variable values):

 1. (Engine=“E_lp”) compatible (Cab=“Cab_lp”) and
(Engine=“E_hp”) compatible (Cab=“Cab_hp”). 3.2 Constraint Model and Propagation Techniques

A task entity (TI, for task “I”) is defined and gathers the three real
variables defined with intervals corresponding with the three
temporal parameters:

The functional and physical views are linked with constraints that
show how the components can fulfil the parameters of the functional
view. Three constraints show the following possible combinations
(solid lines): 1. pst: possible start time (TI.pst),

2. pdt: possible duration (TI.pdt), 1. the height of the crane (V_length) and the maximum load
(M_load) are linked with the vertical structure (V_Struct), 3. pft: possible finishing time (TI.pft).

When all the variables are numerical and each constraint written
with a mathematical formula, f(x1, x2…xn) (= > <) 0, Bound
Consistency, proposed by [12] and based on interval arithmetic [13],
proposes filtering techniques that operate fine if:

2. the maximum load (M_load) impacts the engine selection
(Engine),

3. the width of the crane (H_length) is associated with the
horizontal structure (H_Struct).

1. f(x1, x2…xn) = 0 can be projected on any variable xi meaning
that a function fi exists as: xi = fi(x1,x2….xi-1, xi+1,…xn),

One activity constraint is necessary to allow triggering the existence
of the variable (Cab) corresponding with the component group
“cab”. 2. any projections fi is continuous and monotonous,

3. only one constraint expressed as a formula acts on a same
variable subset. Bound Consistency is weak when more than
one constraint acts on a same sub-set of variables
(corresponding to some constraint intersection). It is shown in
[14] that a simple problem gathering two variables and three
constraints cannot be fully filtered,

3 PRODUCTION PLANNING

This section is concerned by the definition of the planning problem
we address. The problem is first defined, then the constraint model is
described and propagation techniques are discussed. The description
of the example finishes this section.

4. each variable occurs only on time in a formula. In the opposite
case, for example: x1

2 – x1 - x2 = 0 , it has been shown that the
way to express the mathematical expression, for example: x1

2 –
x1 - x2 = 0 or x1*(x1 – 1) - x2 = 0, influences the quality of the
filtering operation [14].

3.1 Planning Problem Description.

As we consider only the two following kinds of constraints: As we address production planning, we will consider a task entity
and that the production process is a set of task entities. As the
present time we only consider planning with infinite resource
capacity. A task entity is defined with:

1. TY.pst > TX.fst expressing that task Y is after task X
2. TI.pft = TI.pst + TI.pdt expressing the relation between

starting, finishing times and duration, for any task “I”,
1. temporal parameters: possible start time (pst), possible

finishing time (pft), possible duration (pdt),
we can use Bound consistency filtering algorithm with the various
projections of the two previous kinds of constraints. Planning works
perfectly as far as there is no “XOR” node. 2. resource parameters: required resource (rrs), quantity of

required resource (qrs).

TX

TY

TZ

& & T0

TA

TB

OR T1ORTX

TY

TZ

& & T0

TA

TB

OR T1OR

3. compatibility constraints can link possible duration (pdt), with
required resource (rrs) and/or quantity of required resource
(qrs).

 The three temporal parameters are numerically defined with

intervals while resource parameters can remain symbolic (as we
consider infinite resource capacity). The production process is
defined with:

Figure 4. Production process model 1. a set of task,
 2. a set of precedence constraints between task expressing that

task Y is after task X or: Y.pst > X.pft These kinds of
constraints have certain similarities to the Allen’s primitives
[11] (before, after, starts, finishes . . .).

In order to deal with the “XOR” node or to modulate the existence
of some tasks or sets of tasks, it is necessary to be able to express
that some of them have their existence conditioned. A CSP
extension called Conditional and Composite Temporal Constraint
Satisfaction Problems or CCTCSP has been proposed in [15]. But,
CCTCSP does not allow the tasks (represented by events) to have an
interval for their length of time. We have therefore define a Meta-
task entity “XOR” that gathers two tasks that are linked with a
“XOR” node.

With these elements the production process can gather sequential
tasks and parallel tasks as shown with the “AND” node (&) in the
left part of figure 4. Planning decisions can correspond with:
1. temporal parameters, value selection or domain restriction,
2. resource and/or resource quantity selection or domain

restriction . Assume that we have a process T0 then TA or TB then T1 (as in
the right part of figure 4): In order to be able to select a path or a branch in the process (OR

node in the right part of figure 4) it is necessary to be able to control
the existence of the task entities.

1. TA with TA.pst, TA.pdt, TA.pft
2. TB with TB.pst, TB.pdt, TB.pft

ECAI 2008 Workshop on Configuration Systems 43

ACF.pdt = {0 , [3 , 4]} In order to modulate the existence of TA and TB we add:
6. Finish (F): if no cabin in the configuration, 1. the single numerical value 0 in the definition domain of the

possible duration of TA and TB, TA.pst, TB.pst, F.pdt = {0 , [1 , 2]}
7. XOR_ACFF.pdt= ACF.pdt U F.pdt, and XOR_ACFF.pdt > 0, 2. a constraint that excludes two null values or two non null

values for the duration of TA and TB, admitted tuples are
therefore: (TA.pdt = 0 , TB.pdt � 0) and (TA.pdt � 0, TB.pdt =
0).

XOR_ACFF.pdt= { [1 , 2] , [3,4] }
8. Deliver (D): corresponds with the delivering of the completed

crane. Two different transportation resources can be used and
modulate duration. The possible starting and finishing times of the XOR_AB meta task

gathering TA and TB, XOR_AB.pst and XOR_AB.pft, are
constrained by:

D.pdt = [1 , 2]
D.rrs = {fast_transp , slow_transp}
D.qrs = “1”

1. XOR_AB.pst > T0.pft meta task starts after T0 Constraint (D.rrs , D.pdt): allowed combinations:
2. XOR_AB.pst � TA.pst meta task starts before TA { (slow_transp, [1.5 , 2]) , = (fast_transp, [1 , 1.5]) }
3. XOR_AB.pst � TB.pst meta task starts before TB
4. TA.pft � XOR_AB.pft meta task finishes after TA These elements are summarized in figure 6. All starting and

finishing dates have an initial interval value [0 , 20]. All constraints
are propagated and the domain of all temporal parameters are
reduced and provide the result of figure 6.

5. TB.pft � XOR_AB.pft meta task finishes after TB
6. T1.pst > XOR_AB.pft meta task finishes before T1
The possible duration of the XOR_AB meta task is constrained by:

 1. XOR_AB.pdt = TA.pdt U TB.pdt, the possible duration of the

meta task equals the union of the possible duration of tasks A
and B

 2. XOR_AB.pdt > 0, the possible duration of the meta task is
always strictly positive.

The meta-task “XOR” temporal parameters are propagated with the
same Bound consistency filtering algorithm. When two sequences
of tasks are considered, it is first necessary to aggregate each branch
then to define the meta-task “XOR” on the aggregated task.

3.3 Example relevant to Production Planning.

The Figure 5 shows the planning model relevant to the production
of the crane example.

pst=[0,13]
pdt=[3,6]
pft=[3,16]

&

pst=[0,14]
pdt=[2,4]
pft=[2,16]

&

pst=0
pdt=0
pft=0

pst=[3,16]
pdt=[2,2]
pft=[5,18]

pst=[6,19]
pdt=[1,2]
pft=[7,20]

OR OR

pst=[5,19]
pdt={0,[1,2]}
pft=[5,19]

pst=[5,19]
pdt={0,[3,4]}
pft=[5,19]

pst=[5,18]
pdt={1,2],[3,4]}
pft=[6,19]

L

MS

SE

AS

ACF

F

XOR_ACFF

D

pst=[0,13]
pdt=[3,6]
pft=[3,16]

&

pst=[0,14]
pdt=[2,4]
pft=[2,16]

&&

pst=0
pdt=0
pft=0

pst=[3,16]
pdt=[2,2]
pft=[5,18]

pst=[6,19]
pdt=[1,2]
pft=[7,20]

OR OR

pst=[5,19]
pdt={0,[1,2]}
pft=[5,19]

pst=[5,19]
pdt={0,[3,4]}
pft=[5,19]

pst=[5,18]
pdt={1,2],[3,4]}
pft=[6,19]

OR OR

pst=[5,19]
pdt={0,[1,2]}
pft=[5,19]

pst=[5,19]
pdt={0,[3,4]}
pft=[5,19]

pst=[5,18]
pdt={1,2],[3,4]}
pft=[6,19]

L

MS

SE

AS

ACF

F

XOR_ACFF

D

Figure 6. Production process after first propagation.

OR DeliverOR

Finish

Ass. Cabin
and Finish

& Ass.
Structure

&

Source
Engine

Manuf
Structure

Launch OR DeliverOR

Finish

Ass. Cabin
and Finish

& Ass.
Structure

&

Source
Engine

Manuf
Structure

LaunchLaunch

4 COUPLING CONFIGURATION AND PLANNING

Coupling constraints are introduced followed by some illustrations
with the crane example.

4.1 Coupling Constraints Figure 5. Production process model of the crane. A coupling constraint is a compatibility constraint that links a
variable of the configuration model with a variable of the planning
model. Various kinds of coupling constraint have been identified.
Any variable of the configuration model, belonging either to the
function or the component view, can belong to a coupling a
constraint. On the planning model side, three cases can be
identified:

The following tasks are therefore considered. Only possible duration
(pst) for each task is provided. A required resource with a quantity
is define just for two tasks (Manuf Structure and Deliver). is
defined. A launching task has been added:
1. Launch (L): event that allows to set a launching time,

L.pst = L.pdt = L.pft = 0,
2. Manuf structure (MS) corresponds with the manufacturing of

the two structures (V_Struct and H_Struct), a small and a large
machine can be used with a quantity 1,

1. the planning variable is a resource parameter (rrs or qrs). This
allows to propagate the impact of a configuration decision on
the selection of the required resource and/or resource quantity,
reverse behaviour from resource selection to product
configuration is also possible,

MS.pdt = [3 , 6],
MS.rrs = {large_mach , small_mach}
MS.qrs = “1” 2. the planning variable is the temporal parameter duration (pst),

that does not belong to a XOR meta task. This allows to
propagate the impact of a configuration decision on the
modulation of the duration of a task, reverse behaviour from
duration modulation to product configuration is also possible,

3. Source Engine (SE): corresponds with the sourcing of the
engine (E_lp and E_hp),
SE.pdt = [2 , 4],

4. Ass Structure (AS): assembly of the two structures with the
engine, duration always equal to 2, 3. when the temporal parameter duration (pst) belong to a XOR

meta task, the previous behaviour is completed with the
possibility to select one of the task of the meta-task.

AS.pdt = 2,
5. Ass Cabin and finish (ACF): if a cabin is present in the

configuration,

44 ECAI 2008 Workshop on Configuration Systems

 4.2 Illustration with the Crane Example 8. Deliver (D) : D.pdt = [1, 2]
D.pst = [7.5, 19] and D.pft = [8.5 , 20]

 Four coupling constraints are first proposed and then coupling is
illustrated.

 The three cases of coupling constraints are illustrated as follow:
 1. the planning variable is a resource parameter:
 1 - The resource of the task manufacturing structure, MS.rrs,

is linked with the height of the crane, V_Length, with the
following allowed combinations, Constraint (V_Length,
MS.rrs): { (“4m”, “small_mach”) , (“8m”, “large_mach”) }

 2. the planning variable is a duration parameter that does not

belong to a XOR meta task:
 1 - The duration of the task manufacturing structure, MS.pdt,

is linked with the maximum load, M_load, with the following
allowed combinations : Constraint (M_load, MS.pdt) :

pst=[7.5,19]
pdt=[1,2]
pft=[8.5,20]

pst=[0,11.5]
pdt=[4.5,6]
pft=[4.5,16]

&

pst=[0,13]
pdt=[3,4]
pft=[3,16]

&

pst=0
pdt=0
pft=0

pst=[4.5,16]
pdt=[2,2]
pft=[6.5,18]

OR OR

pst=[6.5,19]
pdt={0,[1,2]}
pft=[6.5,19]

pst=[6.5,19]
pdt={0,[3,4]}
pft=[6.5,19]

pst=[6.5,18]
pdt={1,2],[3,4]}
pft=[7.5,19]

L

MS

SE

AS

ACF

F

XOR_ACFF

D
pst=[7.5,19]
pdt=[1,2]
pft=[8.5,20]

pst=[0,11.5]
pdt=[4.5,6]
pft=[4.5,16]

&

pst=[0,13]
pdt=[3,4]
pft=[3,16]

&&

pst=0
pdt=0
pft=0

pst=[4.5,16]
pdt=[2,2]
pft=[6.5,18]

OR OR

pst=[6.5,19]
pdt={0,[1,2]}
pft=[6.5,19]

pst=[6.5,19]
pdt={0,[3,4]}
pft=[6.5,19]

pst=[6.5,18]
pdt={1,2],[3,4]}
pft=[7.5,19]

OR OR

pst=[6.5,19]
pdt={0,[1,2]}
pft=[6.5,19]

pst=[6.5,19]
pdt={0,[3,4]}
pft=[6.5,19]

pst=[6.5,18]
pdt={1,2],[3,4]}
pft=[7.5,19]

L

MS

SE

AS

ACF

F

XOR_ACFF

D

Figure 7. Planning after configuration. { (“<1t”, [3 , 4.5]) , (“1t << 2t”, [4.5 , 6]) }
 2 - The duration of the task source engine, SE.pdt, is linked

with the engine component, Engine, with the following
allowed combinations : Constraint (Engine, SE.pdt) :

One of the consequence of the coupling lies in the increase of the
total finishing time (D.pft) from [7 , 20] to [8.5 , 20]. If we assume
now that the person in charge of planning wants to secure the
manufacturing tasks and selects the maximum duration for them :
MS.pft = [6,6] and SE.pft = [4,4]. Planning propagation gives the
planning of figure 8 with a total finishing time D.pft = [10,20].

{ (“E_lp”, [2, 3]) , (“E_hp”, [3, 4]) }
3. the planning variable is a duration parameter that belong to a

XOR meta task in order to select the existence of a task :
1 - The duration of the task assemble cabin and finish,
ACF.pdt, is linked with the existence of a control cabin, Ctr-
Cab, with the following allowed combinations : Constraint
(Ctr-Cab, ACF.pdt) : { (“no”, [0]) , (“yes”, [3 , 4]) }

 4.2.1 Propagating product configuration decisions toward

production planning.

 If we assume the following configuration decisions:

1. V_length = “8m”
2. H_length = “2m”
3. M_load = “1t << 2t”
and leave open the decision relevant to the existence of a control
cabin. The configuration provide the component set :

pst=[9,19]
pdt=[1,2]
pft=[10,20]

pst=[0,10]
pdt=[6,6]
pft=[6,16]

&

pst=[0,12]
pdt=[4,4]
pft=[4,16]

&

pst=0
pdt=0
pft=0

pst=[6,16]
pdt=[2,2]
pft=[8,18]

OR OR

pst=[8,19]
pdt={0,[1,2]}
pft=[8,19]

pst=[8,19]
pdt={0,[3,4]}
pft=[8,19]

pst=[8,18]
pdt={1,2],[3,4]}
pft=[9,19]

L

MS

SE

AS

ACF

F

XOR_ACFF

D
pst=[9,19]
pdt=[1,2]
pft=[10,20]

pst=[0,10]
pdt=[6,6]
pft=[6,16]

&

pst=[0,12]
pdt=[4,4]
pft=[4,16]

&&

pst=0
pdt=0
pft=0

pst=[6,16]
pdt=[2,2]
pft=[8,18]

OR OR

pst=[8,19]
pdt={0,[1,2]}
pft=[8,19]

pst=[8,19]
pdt={0,[3,4]}
pft=[8,19]

pst=[8,18]
pdt={1,2],[3,4]}
pft=[9,19]

OR OR

pst=[8,19]
pdt={0,[1,2]}
pft=[8,19]

pst=[8,19]
pdt={0,[3,4]}
pft=[8,19]

pst=[8,18]
pdt={1,2],[3,4]}
pft=[9,19]

L

MS

SE

AS

ACF

F

XOR_ACFF

D

 1. V_Struct = “V8_n”
Figure 8. Planning after Manufacturing freezing duration. 2. H_Struct = “H2_n”
 3. Engine = “E_hp”.
4.2.2 Propagating production planning decisions toward product
configuration.

Coupling constraints provide :
The selection of resource :

 1. MS.rrs = “large_mach” If we assume that the total finishing time D.pft should be now less
than 11. This implies : The modulation of the task duration :

1. MS.pdt = [4.5 ,6] For task D :
2. SE.pdt = [3, 4] 1. D.pft = [10 ,11] and D.pst = [9 ,10],
Planning constraint propagation provide (also shown in figure 7): For meta task XOR_ACFF, task F and ACF :
1. Launch (L) : L.pst = L.pdt = L.pft = 0, 1. XOR_ACFF.pft = [9 ,10] and XOR_ACFF.D.pst = [8 ,9],
2. Manuf structure (MS) : MS.pdt = [4.5 ,6] 2. F.pft = [8 ,10] and F.pft = [8 ,10]

MS.pst = [0, 11.5] and MS.pft = [4.5 , 16] 3. ACF.pft = [8 ,10] and ACF.pft = [8 ,10]
3. Source Engine (SE) : SE.pdt = [3 ,4] and the propagation of the constraints expressing that finish time

equal start time plus duration (Tpft = T.pst + Tpdt) and the
constraint of the XOR node give :

MS.pst = [0, 13] and MS.pft = [3 , 16]
4. Ass Structure (AS)) : AS.pdt = [2 ,2]

AS.pst = [4.5, 16] and AS.pft = [6.5 , 18]
1. Task ACF : ACF.pdt = [0,0] 5. Ass Cabin and finish (ACF) : ACF.pdt = {0 , [3 , 4]}
2. Task F : ACF.pdt = [1,2] ACF.pst = [6.5, 19] and ACF.pft = [6.5 , 19]
3. meta task XOR_ACFF : XOR_ACFF.pdt = [1,2] 6. Finish (F) : F.pdt = {0 , [1 , 2]}
Planning propagation has therefore selected task F and canceled
task ACF. The null value for ACF.pdt is then propagated to the
configuration model and forbid the selection of a control cabin by
reducing the variable Ctr-Cab to the value ”no”.

F.pst = [6.5, 19] and F.pft = [6.5 , 19]
7. XOR_ACFF.pdt = { [1 , 2] , [3,4] }

XOR_ACFF.pst = [6.5, 18]
XOR_ACFF..pft = [7.5 , 19]

ECAI 2008 Workshop on Configuration Systems 45

5 CONCLUSIONS

The aim of this communication was to present the first results and
prospective ideas about the development of an interactive aiding
system, that simultaneously allows product configuration and
production planning. The main interest and goal of this system is to
be able to take into account :
1. product configuration decisions when dealing with production

planning,
2. production planning decisions when dealing with product

configuration.

We have first presented our problem and proposed to associate each
problem with a constraint satisfaction problem and to link the two
problems with coupling constraints.
Then, a simple configuration problem was defined and modelled
with two views : functions and components. Constraint propagation
was achieved thanks to arc consistency techniques. An example
dealing with a crane was described.
The planning problem was defined and modelled thanks to a
network of tasks that allows “AND” and “OR” nodes. Bound
consistency techniques were used to propagate constraints. The
crane example was extended with production planning entities.
The final section described the constraints that can associate the two
previous models in order to pass decisions made from one to the
other. The crane example was used to show (i) how configuration
decisions were propagated to planning and (ii) how planning
decisions were propagated to configuration.

One of the interests of the proposed system is that it relies only on
the simple assembly of two constraint filtering techniques : arc
consistency for discrete CSP and Bound consistency for numerical
or mixed CSP, that can be soon consulted at
http://cofiade.enstimac.fr/cgi-bin/cofiade.pl (chose model ECAI08-
crane). The other main interest is relevant to the application domain,
where the possibility to manage interactions between product
configuration and production planning has been addressed. These
elements must be considered as primary results that need to be
consolidated with structured (or multi-level) planning, finite
resource capacity planning and less routine design.

ACKNOWLEDGMENT

The authors would like to thank :
1. the French National Research Agency (ANR) and the 7th

Strategic Activity Domain (Architecture and Integration) of
Aerospace Valley for their involvement in this project,

2. their partners in the ATLAS project : Anyware Technologies,
Pulsar Innovations, Sigma Plus and LAAS-CNRS from
Toulouse (France), LGP-ENIT from Tarbes, (France), and
IMS-LAPS from Bordeaux (France).

6 REFERENCES

[1] Suh N., 1990, The principes of design , Oxford Series.
[2] Steward, Donald The Design Structure System: A Method for

Managing the Design of Complex Systems" IEEE Transactions
on Engineering Management, vol. 28, pp. 71-74, 1981

[3] Gero J.S., 1990, Design prototypes : a knowledge representation
schema for design, AI magazine, Vol 11 n°4, p 26-36

[4] Lindemann U., 2007, A vision to overcome “chaotic” design for
X processes in early phases, Int Conference on Engineering
Design (ICED), Paris France.

[5] Sabin D., Weigel R., “Product Configuration Frameworks – A
survey”, IEEE Intelligent Systems, vol. 13, n° 4, 1998, p. 42-49.

[6] Soininen T., Tiihonen T., Männistö T., Sulonen R., “Towards a
General Ontology of Configuration”, AIEDAM, vol. 12, n° 4,
1998, p. 357-372.

[7] R. Dechter, I. Meiri, J. Pearl, Temporal Constraint Satisfaction
Problems, Artificial Intelligence, 49, pp. 61-95, 1991.

[8] P. Laborie. ‘Algorithms for Propagating Resource Constraints in
AI Planning and Scheduling: Existing Approaches and New
Results’. Artificial Intelligence, 143, pp. 151-188. 2003.

[9] E. Tsang, Foundations of constraints satisfaction, Academic
Press, London, 1993.

[10] Mittal S., Falkenhainer B., « Dynamic Constraint Satisfaction
Problems », Proceedings of the 9th National Conference on
Artificial Intelligence AAAI, Boston, USA, 1990, p. 25-32.

[11] J. Allen, Maintening knowledge about temporal intervals,
Communication of the CACM, tome 26(11), pp. 832-843, 1983.

[12] [Lhomme 1993] O. Lhomme - Consistency techniques for
numerical CSPs - IJCAI 93, Chambéry, France, 1993.

[13] R.E Moore - Intervals Analysis - Prentice Hall, 1966.
[14] O. Lhomme and M.Rueher - Application des techniques CSP

au raisonnement sur les intervalles - Revue d’intelligence
artificielle, Dunod, Vol. 11, pp 283-311, 1997.

[15] M. Mouhoub and A. Sukpan, A New Temporal CSP
Framework Handling Composite Variables and Activity
Constraints, the 17th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI’05) pp. 143-149, Hong-
Kong, November 14-16, 2005.

46 ECAI 2008 Workshop on Configuration Systems

http://cofiade.enstimac.fr/cgi-bin/cofiade.pl

Debugging Structure-based Configuration Models
Thorsten Krebs 1

Abstract. Modern product manufacturers face the problem of man-
aging a variety of product types that change over time. To avoid time-
consuming redesign and manual adaptation, complex products are
assembled from a given set of smaller components. Configuration
is a well-known approach to support the composition of products
from a given set of components. In an environment where config-
urable components and product types continuously evolve, overview
of the represented knowledge can get easily lost. This paper intro-
duces a product-centered framework that semantically distinguishes
the conceptual representations of products and components within
a configuration model for improving the reasoning about impacts
that changes to the configuration knowledge have. It further presents
three typical use cases that are of interest for companies that config-
ure continuously evolving product types.

1 Introduction
Modern product manufacturers face the problem of managing a vari-
ety of product types that change over time. Each product type offers
alternative and optional choices from which a customer can choose.
Such a variety of products is typically needed to satisfy customers
with different demands. In order to stay competitive, product manu-
facturers need to diversify the product variety and improve existing
product types over time. To avoid time-consuming redesign and man-
ual adaptation, complex products are assembled from a given set of
smaller components. This helps to decrease the effort of production
and to increase the performance and functionality of products [21].
The application of configuration tools is a trend to reach this goal.

Configuration is a well-known approach to support the com-
position of products from a given set of components. Structure-
based configuration, in particular, employs hierarchical specializa-
tion structures and composition structures in a configuration model.
Within a configuration model, all potentially configurable products
of a domain are implicitly represented by defining the components
from which a product can be composed, component attributes and re-
lations between the components. Structure-based configuration mod-
els are especially well-suited to represent products that are assembled
from a given set of smaller components. The focus on composition
structures enables a top-down configuration approach and improves
handling product domains with high combinatorial nature.

Objective Typical configuration domains, like consumer electron-
ics, cars, PC’s, complex machines or software applications often con-
sist of several hundreds or thousands of components and restrictions
on how the components can be combined. In an environment where
the configurable components and product types continuously evolve,
overview of the represented knowledge can easily get lost. We will

1 HITeC e.V. c/o University of Hamburg, Germany, email:
krebs@informatik.uni-hamburg.de

use the car domain as an illustrative example throughout the remain-
der of this paper.

When changing a product type in a way that some component is
no longer required, a situation may emerge in which component rep-
resentations or constraints become superfluous. For example, when
a car manufacturer retires his only car with a diesel engine, all rep-
resentations of diesel engines and related constraints unnecessarily
blow up the configuration model’s complexity. Another source of
irritation is the difficulty to overview and manage both conceptual
representations and constraints. Interactions between both kinds of
representations may cause situations in which a concept representing
a component that is intended to be configured for a product type is
in fact inconsistent, i.e. no instance of this concept can be created
during product configuration. This may happen, for example, when
our car manufacturer introduces a new on-board computer and is not
aware of a constraint restricting components that consume too much
energy, as the computer does.

This paper introduces a product-centered framework that seman-
tically distinguishes the conceptual representations of products and
components within a configuration model. The distinction improves
the reasoning about impacts that changes to the configuration knowl-
edge have and allows the knowledge engineer to focus on the product
domain rather than on knowledge representation. We present three
typical use cases that are of interest for companies that configure
continuously evolving product types: (1) which components are rel-
evant for configuring which product type(s) and (2) which are not
relevant for any product type, as well as (3) which of the relevant
components can indeed be instantiated during product configuration.

Reader’s Guide The remainder of this paper is organized as fol-
lows. Section 2 introduces basic modeling facilities on which the pre-
sented use cases rely. Sections 3, 4 and 5 discuss the three use cases
and describe practical algorithms. Section 6 presents related work
and finally Section 7 summarizes the paper.

2 Knowledge Representation

The work presented in this paper uses a Description-Logic based
knowledge representation similar to the one proposed in [15]. Dif-
ferences are the selection of supported constructors and that we use
the Semantic Web Rule Language (SWRL2) [10] to represent rules
(called constraints in this work).

More formally, we use the the knowledge representation language
SWRL-ALCQI+(D), that consists of theALCQI+(D) component
and the SWRL component. Additionally to [15] we allow inverse
roles for reasoning from filler to role specifier, transitive closures

2 SWRL is the proposed standard for specifying rules in future releases of the
Web Ontology Language (OWL).

ECAI 2008 Workshop on Configuration Systems 47

over roles for reasoning about whole subtrees, quantified number re-
strictions for restricting the type of filler and concrete domains for
representing attribute values. Due to space limitations we omit a def-
inition of the used constructors and refer the interested read to [1].

Please note that reasoning in a hybrid approach consisting of a de-
cidable DL and a decidable rule component may not be a decidable
problem. However, we can trade in a little expressivity for decidabil-
ity: the combination of any Description Logic with DL-safe rules is
proven to be decidable [18]. DL-safe rules allow classes and prop-
erties from the Description Logic component to appear freely in the
antecedent or consequent of the rule, with the only restriction being
that they can be applied only to explicitly named instances [17].

Modeling Facilities A concept is a description which gathers
common features of a set of objects in the domain. Concepts are not
objects (and therefore not individuals) but rather patterns that are in-
stantiated (as individuals) during a configuration process. Concepts
are modeled containing two different hierarchical relationships: spe-
cialization and composition.

Specializations are used to model a generalization / specialization
hierarchy, also called taxonomy. Every concept has exactly one an-
cestor, if not the root concept, and can have an arbitrary number of
descendants. Hence, the taxonomy is a tree structure. Children of the
same parent are also called siblings.

Compositions form a composition hierarchy, also called parton-
omy. Concepts are either primitive (sometimes called atomic) or
composite. This means that they reside at the leaves of the compo-
sition hierarchy or are the root of a subgraph, respectively.

Attributes define characteristics of concepts and are represented
with a name and a value. The name is uniquely identifiable within
the taxonomy. The value is restricted to a set of pre-defined value
domains, such as integer numbers, real numbers, ranges of the two,
strings, and sets of all three.

Properties, i.e. both attributes and composition relations, are in-
herited from a parent to all its children. Properties can be refined for
concepts that reside at lower levels of the taxonomy. Values of refined
properties are more specific than the original value.

Instances are instance of exactly one concept and inherit all prop-
erties, i.e. both attributes and composition relations, from this con-
cept definition. The important property of instances is that they have
an identity, which allows them to be distinguished from one another
and to be counted. This means that instances with different names,
even with the same description, will be different instances.

Interdependencies and restrictions between concept definitions are
expressed with constraints. Constraints represent non-hierarchical
dependencies between concepts and concept properties, as well as
the existence of of certain concept instances. A constraint definition
consists of an antecedent and a consequent. The antecedent specifies
a pattern, consisting of a conceptual structure, that evaluates to true
whenever the pattern matches an instance structure. The consequent
is executed when the pattern evaluates to true [6]. Constraints are
unidirectional: a constraint’s consequent needs to be satisfied if and
only if its antecedent evaluates to true.

Modeling Products Product types are represented with the above
described modeling facilities. Basically, the representation of a prod-
uct type is a subtree of the configuration model. This means that one
concept is specified as the root of that subtree (the concept represent-
ing the product itself) and a number of additional concepts, related
via composition relations, represent parts from which actual products
of that type can be assembled.

Abstract and Concrete Components The taxonomic hierarchy
contains abstract concepts and concrete concepts, i.e. generic con-
cepts used for taxonomically grouping similar component types and
concepts representing specific components that can actually be as-
sembled for realizing a product, respectively. For example, a gaso-
line engine is an abstract concept, while the 320ccm-sports-engine is
a concrete concept: there is an engine of this type on stock. Concrete
concepts in this sense are leaf concepts with fully specified property
values, i.e. atomic values for attributes and composition cardinalities.
Such a restriction is reasonable due to the fact that even only slightly
different components, for example the same component in different
colors, typically are assigned unique identifiers (e.g. names or num-
bers) for identifying them on stock.

We assume that a product may specify abstract concepts as parts.
This means that during the configuration process instances of abstract
concepts are created and specialized either directly by selecting one
of the children or indirectly according to their properties that are in-
crementally refined. Hence, we assume it is the goal to specialize
every concept instance to be instance of a concrete concept.

3 Which Components Are Relevant for a Product
Type?

This use case emerges because typically multiple product types are
represented within a single configuration model. Reasoning about a
single product type based on the whole configuration model, it may
happen that a component is constrained inconsistently in two ways:
required for one product type and excluded for another one. For ex-
ample, while the luxury edition of a car requires a navigation system
or computer, small and cheap cars have no space for these compo-
nents. It is thus important to rely on information relevant for the con-
cerned product type only.

The concepts that represent components required for providing the
functionality of a product type constitute a segment of the configura-
tion model. A segment in this sense is a subtree of the configuration
model containing all information relevant for one or more product
types, depending on what the segment is used for. The segmentation
algorithm starts with the corresponding product type’s overall com-
posite concept and creates an extract of the part concepts defined
within the partonomy. Other concepts that are related to the part con-
cepts are identified by following the taxonomic relations, partonomic
relations and constraints.

Please note that the algorithm is inspired by [19]. It also traverses
upwards and downwards in the taxonomy but also needs to address
concept properties, i.e. both attributes and composition relations, and
constraints. The segmentation algorithm is extended accordingly.

Downwards Traversal of the Partonomy The first concepts to
include in the segment are the parts of the overall composite, then
parts of the parts and so on, until all leaf concepts of the partonomy
are reached. Parts of a concept are especially important because they
represent components of which the product can be assembled. All
part concepts that are specified with a maximum cardinality greater
than zero are included in the segment. This means that optional parts
(with cardinality [0; 1]) are also included, they can be selected by a
customer and are required to provide the product type’s functionality.

Comparing Attribute Values Product types may specify product-
specific property values, i.e. restricted values for properties of part
concepts. Simply including part concepts into the segment would in-
clude more than what is actually relevant for the product type. In

48 ECAI 2008 Workshop on Configuration Systems

Figure 1. Creating the segment of a configuration model that is relevant for a product type.

order to include only concepts that specify properties with allowed
values we use two filters. The first filter is to omit concepts with at
least one property value that does not have a common subset with
the restricted value. The second filter is to use the common subset of
original value and restricted value for all properties of concepts that
are included in the product-related segment. For example, for a car
that specifies a gasoline engine with at least 200ccm as a part, the
corresponding concept’s attribute value is restricted accordingly and
all children with less than 200ccm are omitted.

Upwards Traversal of the Taxonomy For every concept included
in the segment, the parent of that concept is included, then the par-
tent’s parent and so on, until the root concept is reached. Parents
of concepts are important due to the fact that they provide critical
information about inherited properties. One might think of merging
superconcepts in order to yield a taxonomy less deep but this would
destroy some of the semantic accuracy as we will see later on.

Downwards Traversal of the Taxonomy The child concepts of
all parts that were reached by traversing the partonomy are also in-
cluded, then the children’s children and so on, until the leaf concepts
of the taxonomy are reached. Children of parts are especially impor-
tant because it is the leaf concepts of the taxonomy that represent
concrete components to be assembled in a product.

The algorithm does not include children of the concepts included
by upwards traversal of the taxonomy. They are not relevant for the
product type and doing so would result in including the entire taxon-
omy. This is something one definitely wants to avoid.

Sibling Concepts in the Taxonomy Sibling concepts of the prod-
uct type’s part concepts and of the part’s parents are not included into
the segment. They are not relevant for the concerned product type due
to the fact that specializations of a concept represent alternatives and
one alternative is determined by the composition relation specifying
the part concept. All other alternatives can safely be discarded, un-
less they are specified as a part of the considered product type on a
different composition path. For a car with a gasoline engine, for ex-
ample, the diesel engine or other siblings are irrelevant. Please note
that this holds for the product type’s part concepts and their parents
only; for children of the product type’s part concepts all siblings are
relevant and included into the segment.

Constraints For every concept that is now included in the seg-
ment the algorithm needs to check whether the concept itself or any

of its properties are constrained. Constrained concepts can easily be
identified due to the fact that they appear within the constraint def-
inition. When this is the case, all other concepts that appear within
the constraint definition need to be included in the segment as well
for being able to check the constraint’s satisfiability. Concerning all
concepts of a constraint definition becomes important, for example,
when not all concepts directly belong to the prodcut specification but
represent external influence like legal regulations, emission laws, or
other context like humidity and temperature constraints on hardware
components. Additionally, parents and children of the constrained
concepts are included by traversing upwards and downwards in the
taxonomy.

Complexity Figure 1 illustrates the segmentation algorithm. Start-
ing from the overall composite, the algorithm first traverses the
partonomy, then the taxonomy upwards to the root concept and
downwards to the leaf concepts, starting from already included con-
cepts. After that, constraints that constrain included concepts are an-
alyzed to include all concepts related via constraints. From these
constraint-related concepts, the taxonomy is also traversed upwards
and downwards to include all parents and children.

Let the configuration model contain n concept definitions in total,
including the root concept and the k < n represented components.
The number of part concepts of the product type l ≤ k, the number of
levels within the taxonomy i < k, the maximum number of children
in a taxonomic level j < k as well as the number of constraints m
and their maximum arity a are considered the influential parameters
of this algorithm. We know that i · j ≤ n because the taxonomy
cannot contain more concepts than the total number of concepts. The
worst case computational complexity is O(n2 + (a− 1)m) and thus
polynomial.

4 Which Components Are Not Relevant for Any
Product Type?

For identifying components that are not relevant for any product type
the segmentation algorithm from the previous section can simply be
executed for every product type. Doing so yields in a segment of the
configuration model containing all concepts that are relevant for at
least one product type. Vice versa, components that are represented
by concepts not included in this segment are not relevant for any
product type.

Concepts that are not relevant for any product type can be consid-
ered superfluous. Superfluous concepts have a different status than
concepts that are relevant for at least one product type and this

ECAI 2008 Workshop on Configuration Systems 49

should be reflected in the configuration model. When the configu-
ration model defines all components that are produced and held on
stock, for example, superfluous concepts lead to unnecessary produc-
tion and should be removed or made otherwise inaccessible.

However, there are various reasons why superfluous concepts may
emerge. For example, the concept may have been relevant for some
product type that was retired in the meantime. Another reason may
be that a knowledge engineer models components first and uses them
to define new product types afterwards. A product manufacturer may
also be interested in supporting his products beyond the time they
were sold and use a versioning mechanism for keeping information
about old product types and components. Thus, superfluous concepts
need to be carefully analyzed and should not be removed right away.
A possibility to manage such concepts is to differentiate between
concepts that are needed, intended to be needed, obsolete (but maybe
still needed because of versioning and product maintenance support)
and indeed superfluous.

Complexity Executing the segmentation algorithm for one prod-
uct type is evaluated in the previous section. When executing this
algorithm for all p product types, p is another influential parameter
of the algorithm: executing the segmentation algorithm for p product
types yields a computational complexity that is p times the previous
computational complexity. The worst case computational complexity
is O(p · (n2 + (a− 1)m)) and thus still polynomial.

5 Which Components Are Reachable?
Creating a product-related segment of the configuration model, we
know which components are relevant for a product type. But not all
concepts that represent relevant components can indeed be reached
during product configuration. Reachability of a concept describes the
fact that it can be instantiated when configuring a product of a given
type and includes two aspects. The first aspect is the fact that con-
cepts are modeled in a taxonomy and all superconcepts of a product
type’s part concept can not be instantiated, unless otherwise spec-
ified as a part of this product type. The second aspect is the fact
that constraints may rule out instances of certain concepts directly
(specialization-related and composition-related constraints) or indi-
rectly (attribute-related constraints). The fact that both aspects need
to be evaluated for deciding on concept reachability stems from the
hybrid representation combining concepts and constraints.

Please note that evaluating reachability of a concept only produces
reliable results when executed on a segment that is relevant for a
single product type. A segment that is relevant for multiple product
types may contain contradictions, like a constraint ruling out concept
instances for one product type that are required for another one.

5.1 Taxonomy-based Reachability
Leaf concepts represent concrete components that can be assembled
in a product. When configuring a product, it is tried to specialize
instances of more general concepts until they are instance of a leaf
concept. Hence, all concepts that are higher in the taxonomy than the
product type’s part concepts are not reachable during product con-
figuration. For a car with a gasoline engine, for example, the generic
motor cannot be instantiated when configuring this type of car. The
generic motor would, among others, also include the diesel engine,
which is not admissible. We assume that the product type’s part con-
cepts and their children are, or at some point in time were, intended
to be used for the concerned product type.

Complexity Let again the configuration model contain n concept
definitions in total, including the root concept and the k < n rep-
resented components. The number of part concepts of the product
type l ≤ k, the number of levels within the taxonomy i < k and the
maximum number of children in a taxonomic level j < k, for which
we know that i · j ≤ k, are considered the influential parameters of
this algorithm. The worst case computational complexity of identify-
ing all concepts that are reachable with respect to the partonomy is
O(k2) and thus polynomial.

5.2 Constraint-based Reachability

Not all concepts representing components that are intended to be
used for a product type are indeed reachable. There may be con-
straints directly ruling out instances of specific concepts or indirectly
restricting property values of concepts in a way that they are incon-
sistent, i.e. no instances of these concepts are admissible.

Constraints are defined on the conceptual level but are evaluated
on the instance level. Hence, constraints are evaluated only when an
existing instance structure matches the conceptual structure of the
constraint’s antecedent. The obvious way to evaluate constraint sat-
isfaction for a conceptual model is instantiating all leaf concepts and
evaluating the resulting constraint net for every admissible combina-
tion of these instances. However, starting from the leaf concepts will
most probably lead to generating instance combinations that are con-
sistent with respect to the product type’s partonomy but are actually
inconsistent with respect to constraints defined for concepts higher
in the taxonomy. Operating top-down prevents from testing incon-
sistent instance combinations. We start by creating instances of the
product type’s part concepts and specialize them along the taxonomy
down to the leaf concepts while evaluating the emerging constraints
that are defined for the corresponding concepts.

A special case of the top-down approach is when no constraints
are defined for any of the generic concepts and their subconcepts.
In this case all leaf concepts are theoretically reachable. But there
is the obvious restriction that an instance of a concept can only be
specialized to one of its children. Thus, all leaf concepts that are
subconcepts of the same concept are disjoint and instances of siblings
can only coexist when more than one part is instantiated.

Specialization-related Constraints restrict the potential choice
between children of the constrained concept by (dis)allowing the spe-
cialization to one or more of the children. This means that all siblings
but the ones that remain consistent are not reachable and can be dis-
carded for further constraint evaluation. For example, when a given
motor requires a specific gear shift, this can be modelled by special-
izing the generic gear shift, that is specified as a part concept of the
product type, to the required one.

Composition-related Constraints restrict the number of in-
strances that may be generated for part concepts of a specific compo-
sition relation. But so long as the maximum cardinality of the compo-
sition relation is greater than zero this does not affect the set of reach-
able concepts. Only when the maximum cardinality of a composition
relation is set to zero, then an instance of the specified part concept is
no longer admissible. This concept and its children are not reachable
and can be discarded for further constraint evaluation. Requiring a
component, for example, can be modelled by setting the minimum
cardinality to one. Excluding a component analogously can be mod-
elled by setting the maximum cardinality to zero.

50 ECAI 2008 Workshop on Configuration Systems

Attribute-related Constraints rule out values of attributes and
may cause inconsistency: a concept becomes inconsistent when the
value of an attribute is constrained in a way that none of its values
are consistent with respect to the constraint. Inconsistent concepts
and their children are not reachable and can be discarded for further
constraint evaluation. For example, tires and rims both have a size
and a width attribute that apparently have to match for being able to
mount a tire on the rim.

5.3 Constraint Satisfaction
A constraint network consists of a finite set of variables (i.e. the con-
strained concepts, concept attributes or composition relations), with
respective domains (i.e. sets of concept names, concrete domains or
cardinality intervals, respectively) which list the possible values for
each variable, and a set of constraints that are defined on a subset
of the variables. The arity of a constraint depends on the number of
variables. A unary constraint is defined on a single variable, a binary
constraint is defined on two variables, and so on.

It is a well-known fact that constraint satisfaction problems (CSPs)
belong to the class of NP-complete problems. There exist a number
of so-called network consistency algorithms (e.g. node consistency,
arc consistency, k-consistency) that have a polynomial computation
time, but do not solve a CSP completely [14, 12]. These consistency
algorithms can be seen as approximations in that they impose neces-
sary, but not necessary and sufficient conditions on the existence of
a solution to a CSP.3

Of course, approximations are not sufficient when trying to find
out which leaf concepts are indeed reachable during product configu-
ration. But what we can do is try to reduce computational complexity
by getting as far as possible from the worst case!

Node Consistency as Preprocessor There may be unary
specialization-related, composition-related and attribute-related con-
straints that can be solved by a simple node consistency algorithm.
In this sense, evaluating node consistency for unary constraints plays
the role of a preprocessor for subsequently solving the constraint net.
The preprocessor eliminates local inconsistencies that would other-
wise later be stumbled upon. For example, specializing the generic
gear shift to a more special one, constraints that are defined for other
but this gear shift need not be checked due to the fact that no in-
stances will match their antecedents.

Reducing the Search Space Specialization constraints and com-
position constraints rule out instances of certain concepts. When
these constraints are evaluated first, fewer instances of leaf concepts
have to be taken into account when solving the constraint net after-
wards. Additionally, often value ranges are provided for which not
all values are actually covered by leaf concepts. In order to reduce
the domain size of constraint variables, the attribute values of all leaf
concepts can be merged into a common superset for the attribute of a
constrained concepts that is higher in the taxonomy. For example, the
size attribute of the tire concept may specify an interval of [16; 20]
inch, but in fact there are only concrete tires with 16, 17 and 20 inch.
Using the common superset {16; 17; 20} allows less combinations
with the sizes of rims and saves computation time. Additionally, we
assume that leaf concepts represent concrete components that have
finite value domains for all attributes. Hence, by merging attribute

3 For an in-depth overview of constraint processing we refer the interested
reader to [2].

values of leaf concepts to a common superset, infinite value domains
need not be considered.

When the value domain of an attribute is modified by solving the
constraint net, some of the leaf concepts become inconsistent due to
the fact that the concerned attribute cannot contain values that are
not covered by at least one of the corresponding attributes of the
leaf concepts. Inconsistent concepts, as well as their children are not
reachable and can be pruned from the search space.

Evaluating Constraints on the Conceptual Level The constraint
net need not be evaluated for every potential combination of leaf
concept instances. It can rather be evaluated for instances of those
concepts for which the constraint is specified. When evaluating the
constraint for instances of the parent concepts the constraint net is
evaluated once instead of for every combination of child concepts.
Let us assume there are 10 different tires and 5 different rims. For the
corresponding constraint there are 50 value combinations that need
to be checked. For the generic tire and rim concepts the constraint
needs to be checked only once. When solving a constraint modifies
attribute values, some of the leaf concepts become inconsistent and
can be pruned analogous to the previous step.

In case there are constraints defined for children of the consid-
ered concept, the algorithm traverses downwards in the taxonomy
and evaluates the emerging constraints. For concepts that allow one
instance within the product configuration, like the gear shift, only one
of its children can be asserted simultaneously. Other children, how-
ever, can also be constrained. This means that the algorithm needs
to branch and create separated constraint nets for evaluating consis-
tency of the sibling concepts.

Newly emerging constraints can be evaluated locally first: in case
the constraint is unary, only one variable is addressed, while in case
the constraint is higher-ary, other variables need to be concerned. Lo-
cal constraint evaluation is sufficient, except for two cases. In the first
case the value domain of the starting variable has changed and this
variable is connected to other constraints as well. In the second case
the constraint includes further variables, whose value domains have
changed, and they are connected to other constraints. In both cases
the constraint net needs to be evaluated. For all but these two cases,
local constraint evaluation saves a considerable amount of computa-
tion time.

Independent Constraint Subnets The last paragraph introduces
a valuable improvement for the constraint satisfaction algorithm.
When evaluating a product type’s consistency, the complete con-
straint net needs to be evaluated once. But this constraint net may
actually consist of multiple smaller subnets that are mutually inde-
pendent. The constraint net consists of mutually independent subnets
when the subnets do not share any variables, which is the case, for
example, when the size attributes of tire and rim are constrained to be
equal and a radio requires a speakers set. Evaluating consistency of
leaf concepts, only constraints that emerge because the algorithm tra-
verses downwards in the taxonomy and dependent constraints need to
be evaluated. Other constraints, that are independent from the emerg-
ing constraints, can be ignored at this point: either they were already
evaluated when the algorithm addressed higher levels of the taxon-
omy, or they are irrelevant for the currently considered combination
of concept instances.

Complexity Constraint satisfaction problems belong to the class
of NP-complete problems and it is not possible to present an algo-

ECAI 2008 Workshop on Configuration Systems 51

rithm with polynomial worst-case complexity. But we have pointed
out several aspects that – in most cases – considerably reduce com-
putational complexity: node consistency as a preprocessor, reduction
of the search space, evaluation of constraints on the conceptual level,
and mutually independent constraint subnets.

6 Related Work

Configuration tools have been developed in the last decades. Two
structure-based configuration tools that employ a very similar repre-
sentation of configuration models are KONWERK [7] and EngCon
[9]. No model editor is publically available so that configuration
models have to be created and maintained manually, e.g. using a text
editor, which is error-prone, of course.

There is a number of readily available ontology editors, e.g. [5],
and Description Logic reasoners, e.g. [20, 8]. Practically all ontol-
ogy editors focus on the Web Ontology Language (OWL)4. There are
differences in expressivity between OWL and our conceptual lan-
guage, mainly because of constraint support. Although hybrid frame-
works combining Description Logics and Logic Programming, such
as CARIN [13] or AL-log [3], have been proposed they still are a
well-known research problem [16] and no ready-to-use solution is
available.

[4] introduce consistency-based diagnosis of configuration mod-
els that is based on first-order logic for representing configuration
knowledge. The goals of that work and the work presented in this pa-
per are very similar, but rely on different knowledge representations.
To the knowledge of the author, no prior approach for managing
knowledge about evolving products is based on structure-based con-
figuration representation mechanisms. The product-centered knowl-
edge management approach is novel in the sense that it semantically
distinguishes concepts representing products and concepts represent-
ing components from which products can be assembled. This distinc-
tion improves the reasoning about impacts that changes to the con-
figuration knowledge have. In this respect the approach supports the
typical work of a knowledge engineer and enables to focus on the
product domain rather than on knowledge representation.

7 Summary

This paper introduces a framework for analyzing the representations
of configurable components that can be assembled for realizing a
product and representations of the product types themselves. We dis-
cuss three typical use cases that are of interest for product manu-
facturers that use structure-based configuration and present practical
algorithms for all three use cases. The first two use cases, i.e. evalu-
ating which components are relevant for which product type(s) and
which components are not relevant for any product type, are sim-
ple and have a linear worst-time complexity. The third use case, i.e.
evaluating which of the relevant components can indeed be reached
during product configuration, has non-polynomial worst-time com-
plexity due to the fact that it comprises constraint satisfaction. But
we point out several aspects that – in most cases – considerably re-
duce computational complexity.

The work presented in this paper belongs to a larger framework
for knowledge management supporting the evolution of configurable
products [11]. This framework not only considers analyzing the rep-
resentations of configurable components and the product types but
also defines evolution processes that directly deal with impacts that

4 http://www.w3.org/TR/owl-ref/

changing components, e.g. introducing new components, new ver-
sions or variants, or retiring components, have on product types and,
vice versa, impacts that changes to product types have on the config-
urable components.

REFERENCES
[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele

Nardi, and Peter F. Patel-Schneider, The Description Logic Hand-
book: Theory, Implementation, and Applications, Cambridge Univer-
sity Press, 2003.

[2] Rina Dechter, Constraint Processing, Morgan Kaufmann, 2003.
[3] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea

Schaerf, ‘AL-log: integrating datalog and description logics’, Jour-
nal of Intelligent and Cooperative Information Systems, 10, 227–252,
(1998).

[4] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus
Stumptner, ‘Consistency-based diagnosis of configuration knowledge
bases’, Artificial Intelligence, 152(2), 213–234, (2004).

[5] John H. Gennari, Mark A. Musen, Ray W. Fergerson, William E.
Grosso, Monica Crubézy, Henrik Eriksson, Natalya F. Noy, and
Samson W. Tu, ‘The evolution of protégé: an environment for
knowledge-based systems development’, International Journal of
Human-Computer Studies, 58(1), 89–123, (2003).

[6] Peter M.D. Gray, Suzanne M. Embury, Kit Y. Hui, and Graham J.L.
Kemp, ‘The evolving role of constraints in the functional data model’,
Journal of Intelligent Information Systems, 12(2-3), 113–137, (1999).

[7] Andreas Günter and Lothar Hotz, ‘KONWERK - a domain independent
configuration tool’, in Proceedings of Configuration (AAAI Workshop),
pp. 10–19, Orlando, FL, USA, (1999). AAAI Press.

[8] Volker Haarslev and Ralf Möller, ‘Racer system description’, in Pro-
ceedings of the International Joint Conference on Automated Reason-
ing (IJCAR’01), pp. 701–705, Siena, Italy, (2001). Springer Verlag.

[9] Oliver Hollmann, Thomas Wagner, and Andreas Günter, ‘EngCon:
A flexible domain-independent configuration engine’, in Proceedings
Configuration (ECAI 2000-Workshop), pp. 94–96, (2000).

[10] Ian Horrocks and P. F. Patel-Schneider, ‘A proposal for an OWL rules
language’, in Proceedings of the Thirteenth International World Wide
Web Conference (WWW 2004), pp. 723–731, New York, NY, USA,
(May 17-22 2004). ACM Press.

[11] Thorsten Krebs, ‘Kowledge management for evolution of configurable
products’, in Twenty-seventh SGAI International Conference on Arti-
ficial Intelligence (AI-2007), Cambridge, England, (December 2007).
Springer Verlag.

[12] Vipin Kumar, ‘Algorithms for constraint-satisfaction problems: A sur-
vey’, AI Magazine, 13(1), 32–44, (1992).

[13] Alon Y. Levy and Marie-Christine Rousset, ‘Combining horn rules and
description logics in CARIN’, Artificial Intelligence, 104(1-2), 165–
209, (1998).

[14] Alan K. Mackworth, J. A. Mulder, and W. S. Havens, ‘Hierarchical
arc consistency: Exploiting structured domains in constraint satisfac-
tion problems’, Computational Intelligence, 1(3), 118–126, (1985).

[15] Deborah L. McGuinness and Jon R. Wright, ‘Conceptual modelling
for configuration: A description logic-based approach’, Artificial Intel-
ligence Engineering Design, Analysis and Manufacturing, 12(4), 333–
344, (1998).

[16] Boris Motik and Riccardo Rosati, ‘Closing semantic web ontologies’,
Technical report, University of Manchester, UK, (2007).

[17] Boris Motik, Ulrike Sattler, and Rudi Studer, ‘Query answering for owl-
dl with rules’, Journal of Web Semantics: Science, Services and Agents
on the World Wide Web, 3(1), 41–60, (2005).

[18] Riccardo Rosati, ‘On the decidability and complexity of integrating on-
tologies and rules’, Journal of Web Semantics, 3(1), 61–73, (2005).

[19] Julian Seidenberg and Alan Rector, ‘Techniques for segmenting large
description logic ontologies’, in Ontology Management: Searching, Se-
lection, Ranking, and Segmentation (workshop at 3rd International
Conference on Knowledge Capture (K-Cap) 2005), p. 4956, Banff,
Canada, (2005).

[20] Evren Sirin, Bijan Parsia, Bernardo C. Grau, Aditya Kalyanpur, and
Yarden Katz, ‘Pellet: a practical owl-dl reasoner’, Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, 5(2), 51–53, (2007).

[21] Markus Stumptner, ‘An overview of knowledge-based configuration’,
AI Communications, 10(2), 111–126, (1997).

52 ECAI 2008 Workshop on Configuration Systems

What Makes Product Configuration Viable in a
Business?

Albert Haag1

Abstract. Product configuration capabilities are gaining in
business importance as technology enables highly individual-
ized specification and handling products and services. However,
its pervasion in the market (while increasing) is slower than
might be expected. What are the prerequisites for successfully
enabling such functionality? What are the impediments? I argue
that the following issues must be addressed:

1. The total cost of implementing product configuration must
be substantially lowered, e.g. by
• A better match between technology and the problem.

This might be achieved by a clearer stratification/ defi-
nition of the problems in business terms, from "engineer
to order" to "pre-stocked variants", say.

• Simplifying deployment and integration of configurator
technology with other involved components such as
CAD systems

• Making the problems themselves more tractable by
business re-engineering if necessary

2. End to end integration with the associated business proc-
esses.

3. Inclusion of the surrounding environment into a product
model inasmuch as this imposes constraints on the valid
configurations

As an outlook, I want to suggest some examples of
applications that might become important in the future.

1 Preamble
One general caveat upfront: this paper would benefit by more
exact numbers indicating the actual economic performance of
product configuration. Unfortunately, this must be deferred to a
later extended version. Here I aim to simply communicate per-
ceptions that result from more than 20 years working in this
field, first at The Battelle Institute (in Frankfurt), and (starting in
1992) at SAP AG, and provoke thought than to guarantee his-
torical accuracy.

2 Expectations and Reality
 Product configuration was one of the R&D topics supported by
substantial funding of artificial intelligence in the 1980s
throughout the world, but particularly in Europe. I participated
(then as an employee of Battelle) in one such project [1]. The
goal was to create a state-of-the-art tool for planning and con-
figuration (PLAKON) and to apply this to several commercially

relevant applications. The project charter cited a foreseen enor-
mous economic potential of such applications. Surprisingly,
these expectations have not yet been fully met.

A lot has been achieved, of course. The number of people
and companies earning their livelihood in the field is now quite
substantial2. SAP itself has between 1500 and 2000 customers
(each having many users) that employ product configuration in
some form as part of the sales and logistics processes.

However, product configuration is still often stigmatized as
being difficult, risky and costly. While some projects that yield
an obvious benefit have been publicized, many customers do
not yet perceive product configuration as a reliable means to
generate demonstrable return-on-investment. This is because it
is sometimes difficult to calculate the benefits vs. the cost.

There are in my opinion two reasons for this:
1. Costs for maintaining the product models, the software

maintenance, and overall integration are perceived as high
(with some justification). These costs are readily visible on
the balance sheet of a company.

2. The benefits of being able to offer configurable products is
sometimes, but not always apparent on the balance sheet.
Before the advent of sales through the internet a knowl-
edgeable sales engineer was often able to personally han-
dle customer specifications without a configurator. Abstract
calculations of potential gains in efficiency of the sales-
force by deploying configurator support were offset by
non-acceptance of such systems by these users.

The internet has changed this to a certain extent. An end-
customer ordering directly will perceive an advantage in being
able to customize the product they are buying. Between two
competitors both offering similar products, the one with the
better configuration capabilities (from a user interaction point
of view) may have a decisive competitive advantage. Thus, if
anyone succeeds in providing configuration capabilities for a
particular product market (segment), this would change the
perception of the benefits obtained though configuration more
or less immediately.

3 Examples of Business Scenarios
3.1 Ordering a Set of Components
A scenario with fairly simple business integration is creating a
configuration that simply determines a list of components that
will be later used to assemble the configuration at the cus-
tomer’s site. A typical example of this is designing a custom
kitchen3 to be comprised only of predesigned components listed
in a catalog. The product model for the sales configurator needs

1 SAP AG, Germany, email: albert.haag@sap.com

2 One indicator is the evolving presence of the field in the internet. Searching the internet (Google) with the term "product configuration" now yields
over 400.000 hits and around 10 sponsored links of tool vendors. Interestingly searching with the term "mass customization" yields only 360.000 hits
and no sponsored links. Searching with both terms yields 23.200 hits. Curiously, in WikiPedia (English) there is no entry for "product configuration"
but one for "mass customization".

3 Other examples would be configuring a model train or designing the cabin layout of an airliner (one of the applications considered for PLAKON).

ECAI 2008 Workshop on Configuration Systems 53

mailto:albert.haag@sap.com
mailto:albert.haag@sap.com

to know the components in the catalog, their properties, price,
and availability. Constraints between these components that
should hold in a valid solution need be known to the configura-
tor but need not be known in the back-end fulfillment system.

On the other hand, this scenario usually requires some form
of interactive visualization. This poses additional requirements
for the sales configurator and its integration with a visualization
tool. As a minimum the configurator must produce
1. the list of components needed
2. One or more CAD-like drawings that allow an unambigu-

ous assembly of the system at the customer’s site.
3.2 Make to Specification
 A scenario with more complex business integration require-
ments is creating a configuration to be manufactured in-house.
A typical example of this is buying a car. Typically the follow-
ing distinct phases are involved
1. The sales-person or the end-consumer specifies the proper-

ties of the car. This step is an interactive sales-
configuration

2. The resulting sales configuration is translated into input to
the manufacturing process. Usually, additional details that
are not relevant to the sales-configuration must be derived
non-interactively. For this reason this phase is referred to
as configuration completion.

3. The completed configuration is used to derive all needed
components and routings (manufacturing steps)

A price for the product will often directly result from the sales-
configuration in itself. Costs and availability, however, may
require completing all three steps.

The product model needs to fulfill several consistency re-
quirements with the master data used in the logistics processes:
1. It must be ensured that the sales-configuration produces

only configurations that can be consistently fulfilled. I.e.
there should be no hitches in the two non-interactive steps.

2. It must be ensured that sales-configuration actually sells
the products logistics has planned for. (E.g. if production is
oriented to produce mainly red cars, it is a disaster if no red
cars are sold, because the configurator does not offer this
choice.)

3. The description of the sales-configuration must be avail-
able for inclusion in the invoice.

It is not unusual for data to be changed at all ends at all times.
Changes on the logistics side tend to be more frequent than at
the sales side (except for price changes).
3.3 Categorizing Business Scenarios
In my opinion, it is one of the open challenges to provide a
definitive list of scenarios and problem categories. The terms
assemble-to-order, make-to-order, engineer-to-order are too
coarse to effectively categorize the problem and mean different
things to different people.
Other factors that play a role in problem classification:
1. Size of the configuration (how many properties and con-

straints are there)
2. Single-level or multi-level (does the configuration have

configurable components like the custom kitchen)?
3. Is the fulfillment process completely automated or are

there manual steps

4. Factors that Contribute to Success

An ROI for product configuration can only be clearly estimated
if two conditions are met:
1. The scenario to be implemented and with it all issues that

must be addressed in the affected business processes must
be identified upfront. The ROI can only be estimated if
solutions for all these issues are readily apparent, Prag-
matically simplifying the approach may significantly im-
prove confidence and chances of success.

2. The costs for maintaining the configurator environment
(s.a. maintaining the product model, data for any associ-
ated functions like CAD or pricing, etc.) need to be esti-
mable with confidence. This is usually only the case if
similar solutions that can be used as a reference exist.

4.1 Simplify the Scenario
Both the configurator vendor and their customer have an interest
in a pragmatic approach to the problem at hand. When selling a
personal computer, for example, there are two extremal ap-
proaches (simple vs. complex from the business perspective):
1. Predefining (and perhaps pre-building and pre-packaging)

the possible variants.
2. Allowing a very low-level construction of the computer

system from a set of potential components
4.1 Integrate the Master Data
Maintenance of the product model and keeping this consistent
and in synch with the master data used in the business processes
is a known challenge that often results in high maintenance
costs. Managing the expectations in this area and having a clear
solution for this is important for the continued success of a
product configuration solution.
4.2 Full-Fledged User-Experience
The capabilities of the configurator itself can contribute signifi-
cantly to the success. In terms of performance, explanations,
conflict handling, etc.

5. Outlook
Configuration is an enabling technology. It can provide a com-
petitive advantage on the sales side, and it provides efficiency
gains on the manufacturing side as a means of dealing with
complexity. But it may also open up new lines of business. In-
stead of just enabling selling and producing new products (or
services) A combination of products and services might also be
used in other ways:
1. Repair/ recycling of products - currently it is often cheaper

to by a new product than to repair an existing one.
2. More highly configurable personal transportation - Provid-

ing solutions with a better mix of public and private trans-
portation would make the former more viable.

3. Configuration of financial products based on individual
needs analysis

4. Purchasing-by-specification. Low volume production
(such as producing quilts, say, or harvesting individual
trees) is currently handled by informal manual interaction.
Means of collaborating by collaborating on specifications
might open new markets here.

REFERENCES
[1] R. Cunis, A. Guenther, H. Strecker(Eds.): Das PLAKON-Buch, Ein
Expertensystemkern für Planungs- und Konfigurierungsaufgaben in
technischen Domänen. Informatik-Fachberichte 266 Springer 1991.

54 ECAI 2008 Workshop on Configuration Systems

http://www.informatik.uni-trier.de/~ley/db/series/ifb/index.html
http://www.informatik.uni-trier.de/~ley/db/series/ifb/index.html

	W12_Opening_Page
	Preface v1
	Workshop Organization
	configuration2008_submission_1
	configuration2008_submission_8
	configuration2008_submission_4
	configuration2008_submission_10
	configuration2008_submission_6
	configuration2008_submission_11
	configuration2008_submission_5
	configuration2008_submission_3
	configuration2008_submission_7

