## SIEMENS

## Solving Practicel conifiguration problems Using UMI

Anclreas Falkrier, Goitified Schenner (Siennens AG Austria)
Gernotselzer, Ingo Feinerer (University of Technology, Vienna)

ECAII 2008 Configuration Workshop

## SIEMENS

## The initial problem

## Problem - Solution - Extensions - Future

Hardware configuration for railway interlocking system

- given the elements and their functions, how much hardware is needed?
- actually create and configure hardware later (sizing problem)



## SIEMENS

## Academic approach

## Problem - Solution - Extensions - Future

Subset of the problem:

- UML classes and minimal number of instances
- associations with lower/upper bounds for cardinalities (multiplicities)

Salzer/Feinerer: paper at TASE 2007

- transform problem into linear Diophantine inequalities
- only 2 variables in inequalities: still NP-complete
- no upper bound of sum: polynomial
- algorithm with weighted directed graphs: O (inequalities * variables²)
- existence of a solution, minimal solution: correspond to diagram

Dissertation of Feinerer:

- won Austrian INiTS Award 2007 for innovative business ideas


## SIEMENS

## Specification with UML

## Problem - Solution - Extensions - Future

multiplicities
class names

uniqueness attribute
lower bounds

## SIEMENS

## Transformation to linear inequalities

Problem - Solution - Extensions - Future


- lower and upper bounds for the number of links (i.e. size of the relation)
- similar considerations for unique and mixed cases
- inequalities are complete and correct (solutions of inequalities correspond to valid object diagrams)


## SIEMENS

## Theoretic example



## SIEMENS

## Practical example

Problem - Solution - Extensions - Future


Page 7

## SIEMENS

## Equality constraints

```
Problem - Solution - Extensions - Future
```

Additional constraints other than for multiplicities

- e.g. "all slots occupied by a module must belong to the same rack"


## class model



Extend UML diagram

- introduce tag "all-same"



## SIEMENS

## Equality constraints (2)

## Problem - Solution - Extensions - Future

Additional constraints other than for multiplicities

- e.g. "all slots occupied by a module must belong to the same rack"


Extend UML diagram
" introduce tag "all-same" Inequalities:

- |Module| $\leq 2$ • |Rack|
- (max. $5 / 2=2$ modules fit in a rack)
- links = 2 • |Module|
- (each module requires exactly 2 links to a rack)
" e.g. "all modules of an element must be placed in the same rack"


## SIEMENS

## Additional inequalities

Problem - Solution - Extensions - Future


- Similar inequalities for other combinations (all-same/unique, etc.)
- Those additional inequalities do not corrupt the existing approach (computational properties, finding and mapping of solutions)


## SIEMENS

## Reasoning about cardinalities

## Problem - Solution - Extensions - Future

By-product of checking the consistency of inequalities:

- Find stronger relationships (restricted cardinalities)
- for Section to Element: $1 . .4$
- instead of $1 . .20$



## SIEMENS

## Type-specific cardinalities

## Problem - Solution - Extensions - Future

Different multiplicities depending on the type of an element Idea: use sub-classes


Additional equation:

$$
1 \cdot \mid \text { Element- } 1|+2 \cdot| \text { Element- } 2|=1 \cdot| \text { Module } \mid
$$

Open issue:

- extend existing algorithm
- computational complexity?


## SIEMENS

## Remaining issues

Problem - Solution - Extensions - Future

Use the approach for the completion of partial configurations
" e.g. "how many more elements will fit into a section?"

- up to now: static analysis, finding (minimal) solutions from scratch

Make use of derived associations

- composed by a path over several classes, e.g. Element - Module - Rack
- used for coping with additional non-numeric constraints like "an element and the rack for it must belong to the same section"


## Extend the approach for handling more types of constraints

- e.g. for numerical attributes or with additional diagram extensions
- if some constraints cannot be incorporated: generate-and-test solutions Integration into configurators used in practice
- usability, performance
- up to now: academic prototypes


## SIEMENS

## Contact

## Thank you for your attention!

Andreas Falkner<br>Siemens AG Austria<br>Siemens IT Solutions and Services<br>PSE CVD IDB6<br>Erdberger Lände 26<br>A-1030 Wien, Austria<br>Phone: +43 5170735932<br>E-Mail: andreas.a.falkner@siemens.com

## Gernot Salzer

Technische Universität Wien
Computer Science Department
Theory and Logic Group
Argentinierstraße 8
A-1040 Wien, Austria
Phone: +43 15880118541
E-Mail: salzer@logic.at

