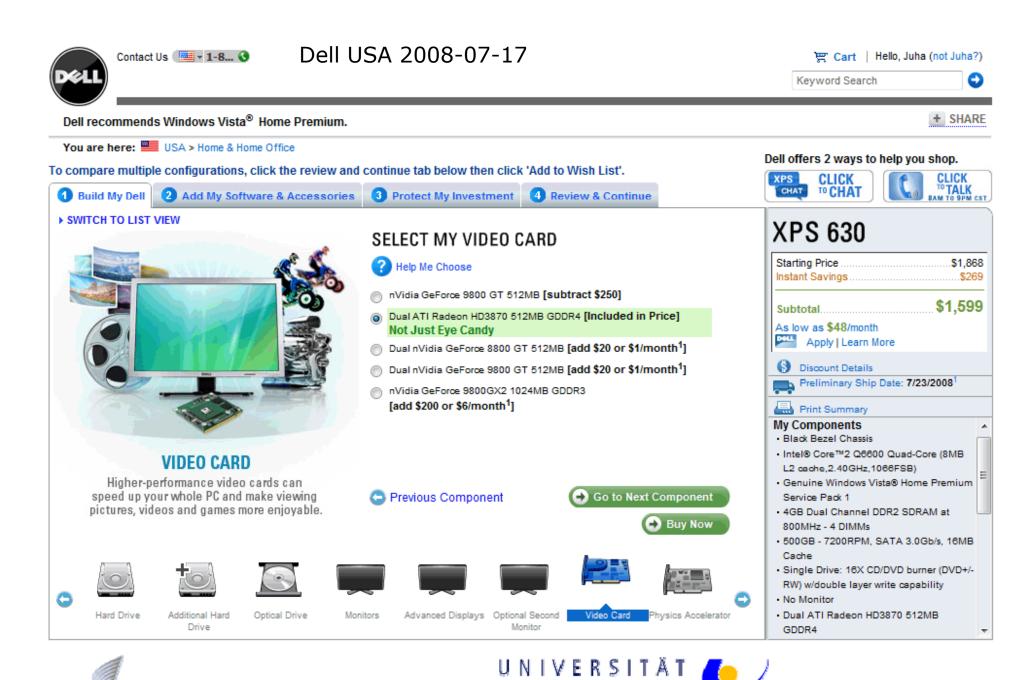


Towards Recommending Configurable Offerings

Juha Tiihonen¹, Alexander Felfernig²

¹ Helsinki University of Technology Department of Computer Science and Engineering ² University Klagenfurt Intelligent Systems and Business Informatics



Outline

- Motivation and background
- Recommendation scenarios
- Distance metrics
- Example: Most popular choice
- Discussion, future work and conclusions

HELSINKI UNIVERSITY OF TECHNOLOGY

KLAGENEURT

Motivation

- What of these configuration alternatives should I select? (Mass confusion)
 - "I want to edit high-definition videos, how to select components to my computer"
 - "Does this nVidia GeForce 9800 GT 512MB suit my requirements?"
- Preferences are constructed which alternatives are presented to the customer, and their order highly affects the final selections
- Overlooking configuration alternatives which could better suit to the customers' wishes and needs
- Users of configurators need more intuitive interaction mechanisms to select product and service alternatives
- \rightarrow Integrate recommendation and configuration technologies

In this paper...

- Apply and extend case-based recommendation to configuration settings
- We extend previous recommendation approaches e.g. [Cöster et al.]
 - To take into account importance weights of features
 - To take into account similarity (substitutes equality)
 - To take consistency into account
 - generate only recommendations that are consistent with customer requirements and the configuration model
- In the paper we discuss "Nearest neighbor", "Weighted Majority Voter", "Most Popular Choice"
- Identify scenarios for recommendation supported configuration & discuss topics for future work KIAGENE

Recommendation scenarios

- Selecting a suitable base product line
- Recommending a complete configuration
- Recommending how to complete a configuration
- Recommending a subconfiguration
- Recommending individual attribute or component settings
- A high diversity of usage and integration scenarios for recommendation technologies

Software Business and Engineering Institute

Sample Configuration model & cases

Feature	Dor	nain		
Video	no	sd	hd	
Photos	no	std	adv	
Gaming	2d	3d	adv	
PR	as	i4	i9	
mb	a1	a2	i1	i2
Ram	1	2	3	4
HD	h2	h5	h9	
GC	g2	g8	g9	_
OD	dr	dw	br	bw

k	f_1 vi	$f_2 \ \mathbf{ph}$	f_3 ga	f_4 pr	$f_5 \ {f mb}$	$f_6 {f me}$	f_7 hd	f_8 gc	f_9 od	с
1	no	no	2d	as	a1	1	h2	no	dr	ba
2	no	std	2d	as	a2	1	h5	g2	dw	\mathbf{st}
3	sd	std	adv	i4	i2	3	h5	g9	dw	ad
4	hd	adv	adv	i9	i2	4	h9	g9	bw	ad
5	sd	adv	3d	i4	i1	2	h9	g8	dw	st
u	no	no	3d							

 $ph \neq no \implies od.dw = yes$: to archive photos $ph = adv \implies hd.capacity \ge 500$: disk space for photos $ph = adv \implies pr.CScr \ge 2500$: CPU for advanced photo

Other constraints in paper...

Distance metrics

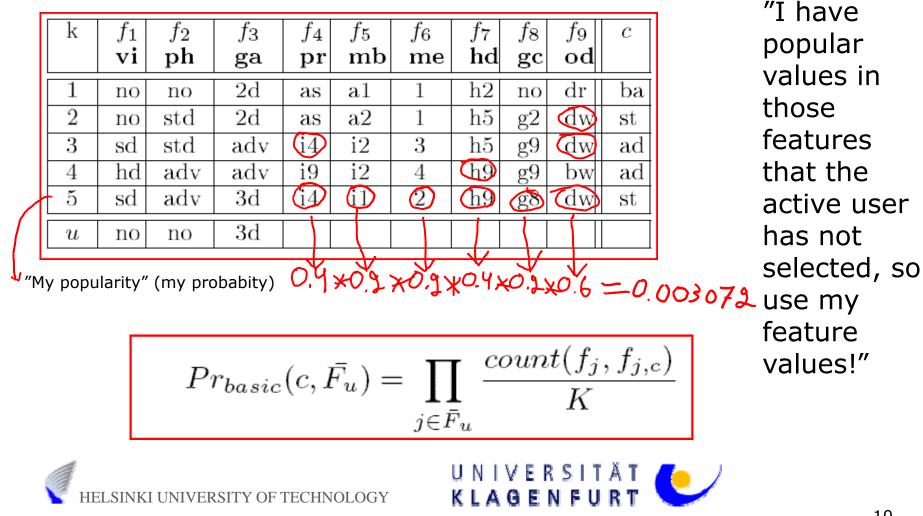
- Distance functions determine similarity or dissimilarity of individual feature values
 - Traditional equality may be too strict - close values or configurations could remain ignored
- Apply Heterogeneous Value Difference Metric (HVDM) [Wilson 1997]
 - Cope with symbolic (nominal) and numeric features
 - Learns the similarity of symbolic values in a domain automatically

$$d_{f_i}(x,y) = \begin{cases} 1 & \text{if x or y is unknown; otherwise} \\ vdm_{f_i}(x,y), & \text{if } f_i \text{ is symbolic} \\ diff_{f_i}(x,y), & \text{if } f_i \text{ is linear} \end{cases}$$

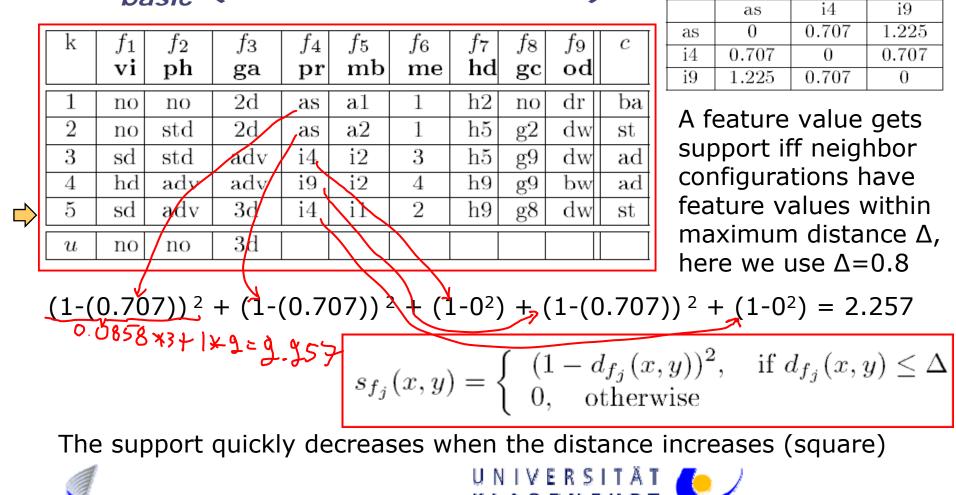
$$vdm_{f_i}(x,y) = \sqrt{\sum_{c=1}^{C} \left| \frac{N_{f_i,x,c}}{N_{f_i,x}} - \frac{N_{f_i,y,c}}{N_{f_i,y}} \right|^2} \\ = \sqrt{\sum_{c=1}^{C} |P_{f_i,x,c} - P_{f_i,y,c}|^2}$$

$$diff_{f_i}(x,y) = \frac{|x-y|}{4\sigma_{f_i}}$$

UNIVERSITÄT

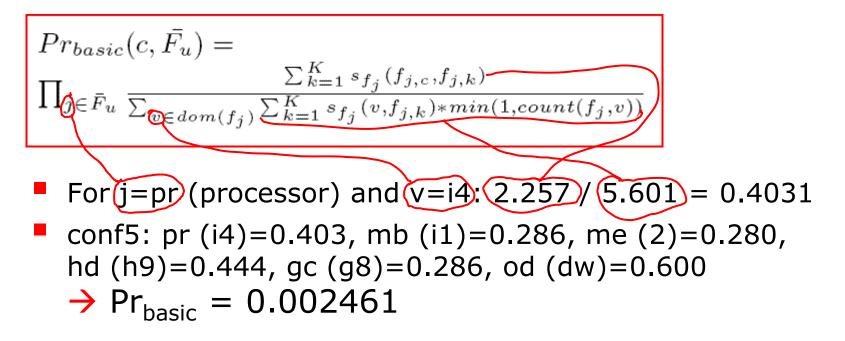

Most Popular Choice

- Recommends values for remaining features \overline{F}_{u} from one configuration Popularity of my (c) feature values in \overline{F}_{u} $Pr(c, u, F_{u}) = Pr_{basic}(c, \overline{F}_{u}) * \prod_{j \in F_{u}} Pr(f_{j,u} = f_{j,u}|Conf)$
- Extended Pr_{basic} from that presented in [Cöster et al, 2002]
- Bayesian predictor part as in original



Pr_{basic} (original version)

Pr_{basic} (extended version)


KLAGENFURT

HELSINKI UNIVERSITY OF TECHNOLOGY

11

Software Business and Engineering Institute

Pr_{basic} of Conf₅

Bayesian predictor

- Bayesian predictor for the user profile u to have the values already selected, given an the existing neighbors (examined by neighbor), $P(f_{j,u}=f_{j,u}/Conf)$
 - Same as in original Cöster formulas
- m-estimate [Bratko et al. 1996] stabilizes probability even in case of (too) few samples
 - Assumes *m* virtual samples with initial probability *p*
 - Future work may improve parameters

UNIVERSITY OF TECHNOLOGY

$$\prod_{f_j \in F} P(f_{j,u} = f_{j,u} | Conf) = \prod_{f_j \in F} m_{est}(eqcfgs_m(c, F \cup f_j, f_j, f_{j,u}), eqcfgs(c, F), 1/K, K) = \frac{Mc + mp}{N + m}$$

Discussion and Future work (1)

- Evaluation (analytical approach, user studies)
- Implementation with configurator integration
- How to provide recommendations in the user interface
 - As default selections, individualized recommendation indication of alternatives, individualized explanatory texts or help, hide unsuitable values, warn against non-recommended combinations
- Consistency of recommendations vs. (partial) configuration
 - E.g. Should a low-weight incompatible selected value always prevent recommending an otherwise superior alternative of an important feature?

Discussion and Future work (2)

The algorithms and their parameters (e.g. m-estimate)

- How to take into account variation of the structure of the product
- Relatively independent subconfigurations? Or everything affects everything?
- Varying weights of features with user preferences
- Similarity metrics
 - How to determine applicable classifications for learning similarity?
 - Classifiers based on the whole product, or e.g. by sub-system?
 - Does our approach produce satisfying results? Or is manual determination of similarity needed?
- Reconfiguration with recommendation support
 - Long relationships \rightarrow changing needs & situations
 - \rightarrow update solution & avoid switching costs or weakening of terms
- Relationship of defaults and recommendations?

Conclusions

- Identified different scenarios for recommendation
- Showed the potential benefits of integrating recommendation with configuration technologies
 - Allows for the derivation of individualized and personalized product and service offerings
 - Potential for reducing the mass confusion phenomenon
 - An important step towards configuration systems which more actively support users in preference construction processes.
- We have developed recommendation approaches
 - To take into account importance weights of features
 - To take into account similarity (substitutes equality)
 - To take consistency into account

Software Business and Engineering Institute

Questions?

Thank you for your attention!

