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® Motivation and background

® Recommendation scenarios

" Distance metrics

" Example: Most popular choice

® Discussion, future work and conclusions
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= 458 Dual Channel DDR2 SDRAM at
200MHz - 4 DIMMs
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= Single Drive: 18X COVDVD burner {DWVD+-
RW) widouble layer write capability
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Motivation

® What of these configuration alternatives should I select? (Mass
confusion)

® "I want to edit high-definition videos, how to select components to my
computer”

® “Does this nVidia GeForce 9800 GT 512MB suit my requirements?”

" Preferences are constructed — which alternatives are presented to
the customer, and their order highly affects the final selections

" Overlooking configuration alternatives which could better suit to the
customers' wishes and needs

— Users of configurators need more intuitive interaction mechanisms
to select product and service alternatives

elntegrate recommendation and configuration technologies
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In this paper...

Apply and extend case-based recommendation to
configuration settings

We extend previous recommendation approaches e.g.
[COster et al.]

" To take into account importance weights of features

" To take into account similarity (substitutes equality)

" To take consistency into account

® generate only recommendations that are consistent with customer
requirements and the configuration model

In the paper we discuss “Nearest neighbor”, "Weighted
Majority Voter”, "Most Popular Choice”

Identify scenarios for recommendation supported

4 configuration & discuss topiﬁ fgrﬁﬂwa W
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Recommendation scenarios

® Selecting a suitable base product line

® Recommending a complete configuration

® Recommending how to complete a configuration
® Recommending a subconfiguration

® Recommending individual attribute or
component settings

—a high diversity of usage and integration
scenarios for recommendation technologies
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Sample Configuration model & cases

Feature Domain kel fui) f2 | fa | fa) fs | fe | fr] fs| fo]| ¢
Videol nol <dl hd vi| ph ga | prl mb| me| hd| gc| od
1 | no| no 2d as | al 1 h2| no| dr|| ba
Ph t
OFOS no| std) adv 2 | no| std | 2d | as| a2 1 ho| g2 dw|| st
Gaming| 2d 3_d aqv 3 | sd| std | adv | 14| 12 3 hs| ¢9| dwl| ad
PR| as| 4 19 4 | hd] adv | adv [ 19| i2 | 4 | h9| g9] bw|| ad
mb| al| a2| il| i2 5 | sd| adv | 3d | i4 ] il 2 h9| g&| dwl| st
Ram| 1| 2 3] 4 u | no|l no 3d
HD| h2| h5| h9
GC| g2| g8| g9 -| | ph # no = od.dw = yes: to archive photos
ob! drl dw! brl bw| | P = adv = hd.capacity = 500: disk space for photos
ph = adv = pr.C'Scr > 2500: CPU for advanced photo
Other constraints in paper...
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Distance metrics

similarity or dissimilarity of

® Distance functions determine
dfi(m,y) - {
individual feature values

1 if x or y is unknown; otherwise
vdmy, (x,y), if fi is symbolic
dif fr,(z,y), if fi is linear

" Traditional equality may be too
strict - close values or
configurations could remain ignored

" Apply Heterogeneous Value

Difference Metric (HVDM vdmy, (2,y) = \/Ele

'''' 7

[Wilson 1997]

2
th',a'rac N.f{?ysc

Nf,i,l‘ Nf@,-y

C 2
- \/Zc:l‘mem,C_Pfi,ij

" Cope with symbolic (nominal)

and numeric features

® Learns the similarity of symbolic
values in a domain automatically

dif fr, (. y) =

[z —y]
Aoy

i
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Most Popular Choice

" Recommends values for remaining features Fu
from one configuration

Popularity of my (c)
feature values inFu

\— _ Nn—"
Pr(c,u, F,) = Prygsic(c, Fi) * H Pr(fju= fju|Conf)
JEFy

Bayesian predictor
for F, to have current
values given Conf

" Extended Pr . from that presented in [COster
et al, 2002]

® Bayesian predictor part as in original
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KT il 72 | Fs | i 55| Jo | o] 5] 7 1 have
1 2 3 4 5 G 7 = 9 C
vi| ph ga | pr| mb| me| hd gc| od pOIDU|an
1 no| no 2d as | al 1 h2| no| dr|| ba values in
2 | no| std | 2d | as| a2 | 1 | h5| g2| dw)| st those
3 | sd| std | adv |{4)] i2 | 3 | hd| g9|{w]| ad features
4 "hd| adv | adv [ 19] 12 | 4 |[Q@I| ¢9] bw| ad that the
+ 5 | sd| adv | 3d Cl;’l) G @) @ @ (}@) st active user
w | no| no | 3d \ {\ I (‘ ‘ has not
NN A4 selected. so
"My popularity” (my probabity) O.Cl 0 3,7(0 1*0 "fXO ;_Xove ——-0 00307‘1 a;e- ;]:];/..
( ) feature
= count( fj, fj.c values!”
PTE}{LBE’C(C: Fu) — H : '
- K
JeEFy
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Pr,..i. (extended version) I
KT Al Rl B[l [ e[ ][ Sl e]m 0?0? 0.';0; (113’3;
vi) ph | ga | pr| mb| me| hd gc| od 0 1225 (0707 | 0
1 | no| no 2d | as| al 1 h2| no| dr|| ba
2 | no| std | 2d/| jas| a2 1 hi| g2| dwl| st Afeatur? Vall'_le gets
3 | sd| std | adv /id| i2 | 3 | ho| g9] dw]| ad|| SuUPportiff neighbor
1 | hd| ady”| ady/[ 1I9]N\2 | 4 | h9] 9] bw|[ ad|| configurations have
e[ 5 [ sd] oftv ] 3¢ [TANIN] 2 [ ho[ 8] dw| st || feature values within
% | 1o /m BYi] \‘\ maximum distance A,
here we use A=0.8

(1-(0. 7{)7))2 + (1-(0.707)) \\02)/+ (1-(0.707)) 2 + (1-02) = 2.257

00858 %34
S ( { —dy, (x,y))",  ifdy,(x,y) <A
sgi(x,y) = 0.

otherwise
The support quickly decreases when the distance increases (square)
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Pr..i. of Conf.

PTba.sic(C; F_u) —

EL 15f; (f_j' esfi, k)
”% “ @@m{f & k=11 “‘MM
o F(processor) := 0.4031

" conf5: pr (i4)=0.403, mb (i1)=0.286, me (2)=0.280,
hd (h9)=0.444, gc (g8)=0.286, od (dw)=0.600
> Pr,... = 0.002461
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Bayesian predictor
" Bayesian predictor for the user profile u to have the values
already selected, given an the existing neighbors (examined

by neighbor), P(f; ,=f; ,|Conf)
® Same as in original Coster formulas
" m-estimate [Bratko et al. 1996] stabilizes probability even

in case of (too) few samples
® Assumes m virtual samples with initial probability p

" Future work may improve parameters

II P(fiw = fiulConf) =

et | J mest(Nc N P m): Ne + mp
[ mestleactasm(c, FU £, £, fiw). eqcfgs(c, F),1/K, K) S + M
fj‘EF
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Discussion and Future work (1)

® Evaluation (analytical approach, user studies)
® Implementation with configurator integration

® How to provide recommendations in the user interface

® As default selections, individualized recommendation
indication of alternatives, individualized explanatory texts or
help, hide unsuitable values, warn against non-recommended

combinations

® Consistency of recommendations vs. (partial)
configuration

® E.g. Should a low-weight incompatible selected value always
prevent recommending an otherwise superior alternative of
an important feature?
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Discussion and Future work (2)

® The algorithms and their parameters (e.g. m-estimate)
" How to take into account variation of the structure of the product
" Relatively independent subconfigurations? Or everything affects everything?

® Varying weights of features with user preferences
® Similarity metrics
" How to determine applicable classifications for learning similarity?
® Classifiers based on the whole product, or e.g. by sub-system?
® Does our approach produce satisfying results? Or is manual determination
of similarity needed?
® Reconfiguration with recommendation support
" Long relationships &> changing needs & situations
éupdate solution & avoid switching costs or weakening of terms

® Relationship of defaults and recommendations?
Z SITAT
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Conclusions

" Identified different scenarios for recommendation

" Showed the potential benefits of integrating
recommendation with configuration technologies

" Allows for the derivation of individualized and personalized
product and service offerings

® Potential for reducing the mass confusion phenomenon

" An important step towards configuration systems which more
actively support users in preference construction processes.

® We have developed recommendation approaches
" To take into account importance weights of features
® To take into account similarity (substitutes equality)
® To take consistency into account

¥ Tdentified numerous areas of future work
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Questions?

Thank you for your attention!
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