Beyond Valid Domains in Interactive Configuration

Tarik Hadzic Barry O'Sullivan

Cork Constraint Computation Centre (UCC)

July 21, 2008

イロン 不得 とくほ とくほとう

ъ

Introduction

- Calculation of Valid Domains (CVD) is one of the major operations of an interactive configurator.
 - Enforces backtrack-freeness, and completeness
 - Is an NP-hard task
- Compilation approach:
 - *Offline*: all solutions compiled into a compact form (BDD, MDD, Automata, ...). Might be huge.
 - *Online*: CVD efficient (*real-time*) in the size of compiled representation

・ロト ・ 一下・ ・ ヨト・

- ⊒ →

• If we have a compact representation of all solutions, we can provide richer interaction forms than just CVD.

Richer Interaction Forms

- Our intuition: by *visualizing* more of the *solution space structure* in each interaction step, a user can:
 - Make *more informed* navigation steps (eg. by directly observing tradeoffs between alternatives)
 - Reach its target in *less interaction* steps (eg. by fixing more variables in a single interaction step)
- A growing family of richer user interaction forms is delivered on top of compiled representations:
 - Optimal relaxations and explanations
 - Postoptimality analysis
 - Configuration with costs and preferences
- Our proposal: use *union of Cartesian products* (Cartesian Union) as a basic visualization form

ヘロト ヘ戸ト ヘヨト ヘヨト

CSP Formalization

Knowledge about the product (service) to be configured can be represented as a *constraint satisfaction problem* (X, D, C):

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- $X = \{x_1, \ldots, x_n\}$ variables
- $D = \{D_1, \ldots, D_n\}$ domains
- $C = \{c_1, \ldots, c_m\}$ constraints
- Sol solution space, all valid configurations

T-Shirt Configuration

Example

Variables: *color, size* and *print*, $X = \{x_1, x_2, x_3\}$. Domains: $D_1 = \{black, white, red, blue\}$, $D_2 = \{small, medium, large\}$, $D_3 = \{MIB, STW\}$. Rules: $F = \{f_1, f_2\}$: $f_1 : (x_3 = MIB) \Rightarrow (x_1 = black)$ $f_2 : (x_3 = STW) \Rightarrow (x_2 \neq small)$

Figure: Valid domains

color size print b,r,g,w s,l,m mib,stw

Figure: After size=small

color size print b s mib

Figure: Entire solution space

color	size	print
b,r,g,w	l,m	stw
b	s,I,m	mib

ヘロト 人間 ト ヘヨト ヘヨト

Car Configuration

Example

Variables: *bumpers,body,top,doors,* and hood, $X = \{x_1, \ldots, x_5\}$. Domains: $D_1 = \ldots = D_5 =$ {white, pink, red, blue}. Rules: bumpers and top should have a lighter color than body. Doors and hood must have the same color as the body.

Figure: Valid domains

bumpers	body	top	doors	hood
w,p,r	p,r,b	w,p,r	p,r,b	p,r,b

Figure: Entire solution space

bumpers	body	top	doors	hood
W	р	W	р	р
w,p	r	w,p	r	r
w,p,r	b	w,p,r	b	b

くロト (過) (目) (日)

Cartesian Union as a Visualization Form

CVD is easy to display as it is a single Cartesian product

 $VD_1 \times \ldots \times VD_n$

- CVD is a very *coarse* visualization: $Sol \subseteq VD_1 \times \ldots \times VD_n$
- Coarse visualization leads user to make uninformed solution space navigation
- We suggest to generalize CVD so that *finer* visualizations of *Sol* are possible

ヘロト 人間 ト ヘヨト ヘヨト

Cartesian Union as a Visualization Form

 Exact Sol structure can be always conveyed as a union of Cartesian products:

$$Sol = \bigcup_i D_1^i \times \ldots \times D_n^i.$$

- There can be too many Cartesian products for a reasonable display of exact *Sol*
- We propose: find a Cartesian Union ∪_i Dⁱ₁ × ... × Dⁱ_n that strikes an adequate balance between the *preciseness of representation* and *displayability*

< D > < P > < E >

• We formulate a set of related problems...

Visualization Problems

Problem (Minimal Exact Representation)

For a given constraint satisfaction problem (X, D, C), with solution space Sol, what is the minimal number of Cartesian products r_{min} necessary to exactly represent Sol:

$$Sol = \bigcup_{i=1}^{r_{min}} D_1^i \times \ldots \times D_n^i.$$

ヘロト ヘアト ヘビト ヘビト

1

Visualization Problems

Problem (Best Bounded Approximation)

For a given constraint satisfaction problem (X, D, C), with solution space Sol, and for a given maximal number of Cartesian products r_{max} what is the smallest over-approximation Sol^{apx}:

$$Sol \subseteq Sol^{apx} = \bigcup_{i=1}^{r_{max}} D_1^i \times \ldots \times D_n^i$$

イロト イポト イヨト イヨト

1

i.e. an over-approximation with the minimal number of elements?

Visualization Problems

Problem (Best Projection)

Given a solution space Sol, and a maximal number of Cartesian products r_{max} what is the subset of variables $X' \subseteq X$ yielding a Cartesian product representation

$$Sol_{X'} = \bigcup_{i} \prod_{x_j \in X'} D_j^i.$$

with at most r_{max} rows, such that projection of solution space Sol on X' variables $Sol_{X'}$, involves the maximal number of solutions?

イロト イポト イヨト イヨト

MDD as a Compilation Structure

- We want a compiled representation that supports visualization forms and queries we discussed
- In this work we use Multi-Valued Decision Diagrams (MDDs), other representations might be used
- We discuss briefly some of the MDD implementation details

< ロ > < 同 > < 臣 > < 臣 > -

Multi-Valued Decision Diagrams

Definition (Multi-Valued Decision Diagram)

A multi-valued decision diagram (MDD) *M* is a tuple (V, r, E, var), where *V* is a set of vertices containing the special terminal vertex **1** and a root $r \in V$, $E \subseteq V \times V$ is a set of edges such that (V, E) forms a directed acyclic graph with *r* as the source and 1 as the sink for all maximal paths in the graph. Further, $var : V \rightarrow \{1, ..., n+1\}$ is a labeling of all nodes with a variable index such that var(1) = n + 1. Each edge $e \in E$ is denoted with a triple (u, u', v) of its start node *u*, its end node *u'* and an associated value *v*.

ヘロト 人間 ト ヘヨト ヘヨト

T-Shirt MDD

Figure: An MDD for the solution space of the T-shirt example.

・ロト ・ ア・ ・ ヨト ・ ヨト

ъ

MDD-Path Minimization

- Each MDD meta-path corresponds to a Cartesian product
- For a given variable set *X*, the most succinct representation corresponds to an MDD with the smallest number of *meta-paths*.
- Several methods to reduce the number of meta-paths in an MDD:
 - *Variable reordering*: the smallest MDD is not an MDD with the smallest number of paths.
 - Non-determinization: result is not an MDD in a strict sense

ヘロト 人間 ト ヘヨト ヘヨト

NP-hard problem.

T-Shirt MDD Reordering

Figure: The T-Shirt example with the standard variable ordering (color, size, print) on the left, and with the new variable ordering (print, size,color) on the right. Note that the number of meta-paths reduced from three to two.

イロト イポト イヨト イヨト

Car MDD Nondeterminization

Figure: Car configuration example on the left, and after non-determinization on the right. The number of meta-paths is reduced from six to three.

イロト イポト イヨト イヨト

Camera Catalogue

- We evaluated some of the techniques on a real-world *Camera catalogue*
- It contains 112 cameras
- Each camera has eight attributes: *brand*, *price*, *resolution*, *optical zoom strength*, *flash memory*, *screen size*, *thickness*, *weight*

.≣⇒

Projection and Nondeterminization

Table: Table illustrating solution loss and row savings by projecting variables for the Camera instance.

Χ'	Sol _{X'}	P _n	Ρ	M _n	M		
1-8	112	100	106	388	394		
1-7	112	94	103	317	325		
1-6	112	87	99	189	200		
1-5	112	83	91	143	149		
2,3,4,5	111	75	92	116	121		
1,2,4,5	110	61	64	79	84		
1,2,3,4	109	73	78	78	80		
2,4,5	108	49	54	66	65		
2,3	91	32	32	34	34		
2,5	88	24	24	26	26		
		•		· · ·		► < ∃ ►	< ∃→

Cameras

Price(\$)	Zoom	Flash (MB)	1	Price(\$)	Zoom	Flash(MB)
109 99+		16		109 99+		16
129.99+	3	16		129.99+		16
139.99+	3	12		130.00+	3	12
149.95	ä	32-		149.95	3	32.
149.99	4	16		140.00	4	16
140.00+	4	16		1/0 00+	3	16
179.95	ž.	16		170.05	3-	16
170.00	3	22		179.95	3	22
100.05	ž	22		100.05	3	22
100.00	ă	23		100.00	3	22
100.00	ă	16		100.00	1.4	16
212.00+	6	14		212.00	1.4	14
215.00	2	22		210.00		22
213.994	3	32		219.99+	2	32
249.90	2	24-		249.93	2	24-
249.99	2	24		249.99		24
249.99	10	32-		249.99	3	52-
295.99+	10	15.4		293.99+	5.0	10
295.99	2	10		293.99+	10	15.4
295.99+	3.0	10		295.99		10
299.95+	10	32		299.95+	10	32
299.95	2	32		299.95		32
299.95		250-		299.95		256-
299.99	10-	10		299.99	10-	10
299.99	2	32,8		299.99	2	32-
299.99	3	32-		299.99	3	32-
319.99	10	10		319.99	10	10
329.95	2	64		329.95		64
329.99	10	21		329.99	10	21
329.99	3	20		329.99	3	20
349.95	3	32-		349.95	3	32-
349.95	1	32		349.95		32
349.99	12-	16		349.99	12-	16
349.99	5	17		349.99	5	17
375.99	2.4	16		375.99+	2.4	16
391.99+	12	16		391.99+	12	16
399.95+	12	32		399.95+	12	32
399.95	10	32-		399.95	10	32-
399.95	5.8	32		399.95	5.8	32
399.95	3	58-		399.95	3	58-
399.99	12-	16		399.99	12-	16
399.99	4	32-		399.99	4	32-
399.99	3	32-		399.99	3	32-
401.99+	3.5	23		401.99+	3.5	23
449.99	3	25		449.99	3	25
499.95	10.7	10		499.95	10.7	10
499.99	3	32-		499.99	3	32-
569.99	4	32		569.99	4	32
599.99	6	32		599.99	6	32
675.99	10.7	16	1		10.7	16

Tarik Hadzic, Barry O'Sullivan

ECAI-08

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Are we on the right track?

- Is Cartesian Union an adequate visualization forms?
- What other forms are suitable in interactive decision making setting?
- Can we utilize existing Information Visualization techniques?
- What are the associated algorithmic challenges?

Dublin-Athens KLM

Choose departure and return date

Need Help?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Dublin-Athens Czech Airlines

Departure				<-	< extension	of 14 days >>	Return				<-	< extension (of 14 days >>
			JULY 2008							JULY 2008			
Mo	Tu	We	Th	fr	Sa	Su	Mo	Тш	We	Th	Fr	Sa	Su
	1.	2.	3.	4.	5.	6.		1.	2.	3.	4.	5.	6.
7.	8.	9.	10.	11.	12.	13.	7.	в.	9.	10	11.	12.	13.
14.	15	16. ×	17. C 187.50	13. ×	19. C 250.00	20. C 155.00	14.	15.	16.	17.	18.	19.	20.
21. C 155.00	22 C 155.00	23. © 155.00	24. C 155.00	25. C 155.00	26. C 126.50	27. C 155.00	21.	22.	23. C 263.00	24 C 263.00	25. C 298.00	26. C 355.00	27. C 263.00
28. C 126.50	29. C 109.00	30. C 76.50	31. C 75.50				28. C 315.00	29. C 253.00	30. © 263.00	31 C 298.00			
		A	UGUST 200	8					А	UGUST 200	8		
Mo	Ти	We	Th	Fr	Sa	Su	Mo	Ти	We	Th	Fr	Sa	Su
				1. C 76.50	2. C 119.00	3. C 135.00					1. C 263.00	2. C 283.00	3. C 315.00
4. C 135.00	5. C 76.50	6. C 101.50	7.	8.	9.	10.	4. C 345.00	5. C 263.00	6. C 283.00	7. C 283.00	8. C 315.00	9. C 283.00	1D. C 315.00

Tarik Hadzic, Barry O'Sullivan

ECAI-08

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ― 国 - のへぐ

Introduction Cartesian Union as a Visualization Form Case-Study: Configuring a Digital Camera

Dublin-Athens Aer Lingus

Select Dates

Jul/Aug 2008 Thu Fri Sat Sun 17 18 19 20 €160 €136 24 25 26 27 0 €309 31 01 02 03 0 0 €160 €160 07 08 09 10 0 €136 €160 Sold out 🖄 No flight on this day

ヘロト ヘワト ヘビト ヘビト

ъ

Cameras - revisited

	Flash (MB)									
		10	12-14	16-17	21-24	32	58	64	256	
	1			110		350				
	3	150	140	130	180	150	400	330	300	
Zoom	4			150		400				
	5	400		350	250	300				
	6		213	400		400				
	10	320	294	300	330	300				
	10.7	500		676		400				
	12			350		400				

・ロト ・聞ト ・ヨト ・ヨト

Summary

- We identified an opportunity of enhancing CVD when compiled representation accessible
- We suggested a *union of Cartesian products* as a visualization form, and identified several problems to finding good Cartesian unions
- We implemented some of techniques based on MDD representation of solution space, and evaluated them on a real-world Camera catalogue
- In future: explore adequacy and algorithmic challenges for other visualization forms

くロト (過) (目) (日)