Towards an Association of Product Configuration with Production Planning

M. ALDANONDO, <u>É. VAREILLES</u>, M.DJEFEL and P. GABORIT

Université de Toulouse Mines d'Albi - Industrial Engineering Lab France

Work situation

- Many studies about aiding product design
 - [Brown and Chandrasekaran 1985], [Coyne, and al. 1990], [Suh 1990]
 - Among them : constraint based approaches and configuration [Tsang 1993], [Mittal and Frayman 1989], [Sabin and Freuder, 1996]
- Many studies about aiding project planning
 - Among them : constraint based approaches
 [Dechter and al. 1991], [Laborie 2003], [Mouhoub and Sukpan 2005]
- Few studies mixing them : [Suh 90], [Steward 81], [Gero 90]....
 - Product configuration decisions
 Project planning decisions
 - Project planning decisions
 Product configuration decisions

Work situation

- Goal of our study...
 - Propose an approach that allows previous interactions
 - Constraint based approach to propagate decision consequences
 - In an interactive way
- Constraints Satisfaction Approaches or Problems:
 - Triplet (X, D, C) where:
 - X = set of variables
 - D = set of domains, one for each variable
 - C = set of constraints
- Detailed example on paper: a crane configuration

Summary

Product Configuration

- Modelling need
- Constraint model and algorithm
- Project Planning
 - Modelling need
 - Constraint model and algorithm
- Proposition for coupling
 - Model of cooperation
 - Illustrate examples

Product Configuration

- Product configuration :
 - Generic model of a product family :
 - set of components + set of properties
 - relation between components and properties
 - Find combinations that fulfil the customer's requirements
- Configuration model :
 - Set of variables
 - mainly symbolic and discrete
 - Constraints between components and properties
 - compatibility constraints + activity constraints
- Interactive processing :
 - Constraint filtering
 - Arc consistency

Classical, well known and robust approaches...

Product Example

Project planning

- Project planning :
 - Generic model of a family of realization plans:
 - set of operations (or tasks) + resource + operation existence control
 - precedence constraints + AND nodes + XOR nodes
 - Find combinations that support realization of the configured product
- Project Planning model :
 - Resources are considered unlimited in this communication
 - Operation or task ={duration, start and finish time} with intervals
 - As far as we know:
 - no existence condition on task / no XOR nodes for task
 - no interval or multi-interval for : duration, start and finish time
 - Classical constraint approaches and tools (as ECLiPse) work fine.
 - In other cases, not obvious at all :
 - very few studies [Mouhoub Sukpan 2005] temporal/activity constraints

=> we propose a XOR node based on bound consistency

Project planning

- XOR node based on bound consistency
 - Two (or more) tasks connected with a XOR node are in a XOR node
 - A task T is defined at intervals with :
 - possible length of time : T.pdt
 - possible start time : T.pst
 - possible finish time : T.pft
 - and Tpft = Tpst + Tpdt

- Arrows correspond with constraint $TX \rightarrow TY$: Y.pst >= X.pft
- Duration of all the tasks of the XOR node (A and B) :
 - zero value (0) is included in the duration of task A and B,
 - 0 for a task duration means that the task is not considered anymore
 - a constraint implies that the duration of all tasks except one = 0
- Duration of the XOR node :
 - XOR_AB.pdt = A.pdt U B.pdt (union of task durations)
 - XOR_AB.pdt > 0 (one of the tasks must be selected)

Project planning

Planning example

Planning example

Proposition for coupling

- Product configuration :
 - Classical CSP mainly discrete
 - Interactive configuration thanks to arc consistency
- Project planning :
 - Numerical CSP relying on interval analysis
 - Interactive planning thanks to bound consistency and XOR nodes
- Coupling product configuration and project planning
 - Identification of constraints involving variables belonging to the two problems :
 - any variable of the product model
 - temporal variables (duration, starting date, finishing date, ressources)
 - specific interpretation : duration restricted to {0}

=> task is not considered anymore

Coupling product configuration and project planning

- Product variable and ressources in planning

Manuf Struct . Rrs	V_length
SM	4m
LM	8m

Product variable and length of time in planning

Manuf Struct . Pdt	M_load
[3, 4.5]	< 1t
[4.5, 6]	1t<<2t

Source Eng	. Pdt	Engine
[2, 3]		E_lp
[3, 4]		E_hp

Product variable and selection of a path

Ass Cab.pdt	Ctr-Cab
0	no
[3, 4]	yes

C A R M A U X

C A R M A U X

C A R M A U X

C A R M A U X

Conclusions

- About aiding configuration and planning with constraint approaches :
 - Many studies have been carried out separately for each domain,
 - As far as we know, none has tried to associate them, in order to propagate consequences between the two problems...
- Interests of the proposed approach :
 - Interactive-simultaneous assistance on configuration and planning
 - User friendly modelling with constraints,
 - Robust and simple filtering techniques,
 - ٠...

• Work to be done :

- Large problems, scaling aspect,
- · Limited capacity planning,
- ♦ ...

<u>Acknowledgement</u>: the authors would like to thank : Anyware Technologie, Pulsar Innovation, Sigma Plus, LAAS-CNRS, LGP-ENIT, IMS-LAPS, the French National Research Agency and the 7th Strategic Activity Domain of Aerospace Valley for their involvement in this study.

ECAI 08 - Patra

Towards an Association of Product Configuration with

Production Planning

