Towards an Association of Product Configuration with Production Planning

M. ALDANONDO, É. VAREILLES, M.DJEFEL and P. GABORIT

Université de Toulouse
Mines d'Albi - Industrial Engineering Lab
France

Work situation

- Many studies about aiding product design
[Brown and Chandrasekaran 1985], [Coyne, and al. 1990], [Suh 1990]
- Among them : constraint based approaches and configuration
[Tsang 1993], [Mittal and Frayman 1989], [Sabin and Freuder, 1996]
- Many studies about aiding project planning
- Among them : constraint based approaches
[Dechter and al. 1991], [Laborie 2003], [Mouhoub and Sukpan 2005]
- Few studies mixing them : [Suh 90], [Steward 81], [Gero 90]....
- Product configuration decisions $\boldsymbol{\rightarrow}$ Project planning decisions
- Project planning decisions $\quad \rightarrow$ Product configuration decisions

Work situation

- Goal of our study...
- Propose an approach that allows previous interactions
- Constraint based approach to propagate decision consequences
- In an interactive way
- Constraints Satisfaction Approaches or Problems:
- Triplet (X, D, C) where:
- X = set of variables
- $D=$ set of domains, one for each variable
- C = set of constraints
- Detailed example on paper: a crane configuration

Summary

- Product Configuration
- Modelling need
- Constraint model and algorithm
- Project Planning
- Modelling need
- Constraint model and algorithm
- Proposition for coupling
- Model of cooperation
- Illustrate examples

Product Configuration

- Product configuration :
- Generic model of a product family :
- set of components + set of properties
- relation between components and properties
- Find combinations that fulfil the customer's requirements
- Configuration model :
- Set of variables
- - mainly symbolic and discrete
- Constraints between components and properties
- - compatibility constraints + activity constraints
- Interactive processing :
- Constraint filtering
- Arc consistency

Classical, well known and robust approaches...

Product Example

Project planning

- Project planning :
- Generic model of a family of realization plans:
- set of operations (or tasks) + resource + operation existence control
- precedence constraints + AND nodes + XOR nodes
- Find combinations that support realization of the configured product
- Project Planning model :
- Resources are considered unlimited in this communication
- Operation or task =\{duration, start and finish time\} with intervals
- As far as we know:
- no existence condition on task / no XOR nodes for task
- no interval or multi-interval for : duration, start and finish time
- Classical constraint approaches and tools (as ECLiPse) work fine.
- In other cases, not obvious at all :
- very few studies [Mouhoub Sukpan 2005] temporal/activity constraints
=> we propose a XOR node based on bound consistency

Project planning

- XOR node based on bound consistency
- Two (or more) tasks connected with a XOR node are in a XOR node
- A task T is defined at intervals with :
- possible length of time : T.pdt
- possible start time : T.pst
- possible finish time : T.pft
- and Tpft = Tpst + Tpdt

- Arrows correspond with constraint TX \rightarrow TY : Y.pst >= X.pft
- Duration of all the tasks of the XOR node (A and B) :
- zero value (0) is included in the duration of task A and B,
- 0 for a task duration means that the task is not considered anymore
- a constraint implies that the duration of all tasks except one $=0$
- Duration of the XOR node :
- XOR_AB.pdt = A.pdt U B.pdt (union of task durations)
- XOR_AB.pdt > 0 (one of the tasks must be selected)

Project planning

Planning example

Planning example

Proposition for coupling

- Product configuration :
* Classical CSP mainly discrete
* Interactive configuration thanks to arc consistency
- Project planning :
- Numerical CSP relying on interval analysis
* Interactive planning thanks to bound consistency and XOR nodes
- Coupling product configuration and project planning
- Identification of constraints involving variables belonging to the two problems :
- any variable of the product model
- temporal variables (duration, starting date, finishing date, ressources)
- specific interpretation : duration restricted to $\{0\}$
=> task is not considered anymore

Coupling example

Coupling product configuration and project planning

- Product variable and ressources in planning

Manuf Struct . Rrs	V_length
SM	4 m
LM	8 m

*Product variable and length of time in planning

Manuf Struct . Pdt	M_load			
$[3,4.5]$	$<1 \mathrm{t}$			
$[4.5,6]$	$1 \mathrm{t} \ll 2 \mathrm{t}$	\quad	Source Eng. Pdt	Engine
:---:	:---:			
$[2,3]$	E_lp			
$[3,4]$	E_hp			

*Product variable and selection of a path

Ass Cab.pdt	Ctr-Cab
0	no
$[3,4]$	yes

Coupling example

Conclusions

- About aiding configuration and planning with constraint approaches :
- Many studies have been carried out separately for each domain,
- As far as we know, none has tried to associate them, in order to propagate consequences between the two problems...
- Interests of the proposed approach :
- Interactive-simultaneous assistance on configuration and planning
- User friendly modelling with constraints,
- Robust and simple filtering techniques,
- ...
-Work to be done :
- Large problems, scaling aspect,
- Limited capacity planning,

