
Debugging Structure-based
Configuration Models

ECAI 2008 – Configuration Workshop
21.-22.07.2008, Patras, Greece

Thorsten Krebs
HITeC e.V. c/o University of Hamburg

Thorsten Krebs: Debugging Structure-based Configuration Models 222.07.2008, Patras, Greece

Contents

Introduction
Knowledge Representation
Which Components are relevant for a
Configurable Product?
Which Components are not relevant for any
Configurable Product?
Which Components are “Reachable”?
Conclusion

Thorsten Krebs: Debugging Structure-based Configuration Models 322.07.2008, Patras, Greece

Contents
Introduction

Motivation
Solution Approach
Context

Knowledge Representation
Which Components are relevant for a Configurable
Product?
Which Components are not relevant for any Configurable
Product?
Which Components are “Reachable”?
Conclusion

Thorsten Krebs: Debugging Structure-based Configuration Models 422.07.2008, Patras, Greece

Introduction

Motivation
Typical configuration domains consist of

several hundreds or thousands of components, and
restrictions on how the components can be combined
in one configuration model.

Environment in which configurable products and
components continually evolve

Overview can easily get lost
Difficulty to manage both conceptual representation and
constraints
Consistency of configuration model is a prerequisite for
deterministic configuration results

Thorsten Krebs: Debugging Structure-based Configuration Models 522.07.2008, Patras, Greece

Introduction

Well-formedness
A configuration model is well-formed when it adheres
to the language specification
But well-formed knowledge may still be inconsistent!

Consistency
A concept is consistent when it allows at least one
instance

A component representation is consistent when it allows
instances
A product representation is consistent when all required parts
(components) are consistent

Thorsten Krebs: Debugging Structure-based Configuration Models 622.07.2008, Patras, Greece

Knowledge Representation
Knowledge Management

Semantic differentiation between
concepts that represent components, and
concepts that represent products

Managing
Products

ManagingManaging
ProductsProducts

Evolution of
Products

Evolution ofEvolution of
ProductsProducts

Versioning of
Products

Versioning ofVersioning of
ProductsProducts

Managing
Components

ManagingManaging
ComponentsComponents

Evolution of
Components
Evolution ofEvolution of
ComponentsComponents

Versioning of
Components
Versioning ofVersioning of
ComponentsComponents

Support for
former products

Available
products

Former
products

Defines
which

products
can be

built

Thorsten Krebs: Debugging Structure-based Configuration Models 722.07.2008, Patras, Greece

Introduction

Solution Approach
Product-centered framework

Semantic distinction between conceptual representation of
components and the configurable products
Improves reasoning about impacts of changes

Three typical use cases:
1. Which Components are relevant for a Configurable

Product?
2. Which Components are not relevant for any Configurable

Product?
3. Which Components are “Reachable”?

Thorsten Krebs: Debugging Structure-based Configuration Models 822.07.2008, Patras, Greece

Introduction

Context
The work belongs to a larger framework:
Knowledge Management Supporting the Evolution of
Configurable Products [Krebs, 2007]

Evolution processes directly dealing with impacts that
Changing components has on configurable products, and
Changing configurable products has on the required
components

More use cases: “introducing a product”, “retiring a
product”, “which products are affected by changing a
component”, “identifying common, widely used, rarely
used and unused property values”, etc.

Thorsten Krebs: Debugging Structure-based Configuration Models 922.07.2008, Patras, Greece

Contents
Introduction
Knowledge Representation

Logical Foundation
Modeling Facilities
Abstract and Concrete Concepts

Which Components are relevant for a Configurable
Product?
Which Components are not relevant for any Configurable
Product?
Which Components are “Reachable”?
Conclusion

Thorsten Krebs: Debugging Structure-based Configuration Models 1022.07.2008, Patras, Greece

Knowledge Representation

Based on Description Logics (ALCQI+(D))…
Concepts

Sets of objects
Roles

Relations between objects
Instances

Specific objects

…and the Semantic Web Rule Language (SWRL)
Antecedent: defines a conceptual pattern

Evaluates to true when a matching instance structure exists
Consequent: defines action

Is executed when the pattern evaluates to true

Thorsten Krebs: Debugging Structure-based Configuration Models 1122.07.2008, Patras, Greece

Knowledge Representation

Modeling Facilities
Concepts

Map to DL concepts
Attributes

Map to DL roles with concrete domains as filler
Composition Relations

Map to DL roles with concepts as filler
Allow to specify a cardianlity

Attributes and composition relations are properties
Instances

Map to DL instances
Constraints

Map to SWRL rules

Thorsten Krebs: Debugging Structure-based Configuration Models 1222.07.2008, Patras, Greece

Knowledge Representation

Abstract and Concrete Concepts
Abstract concepts

Generic concepts used for taxonomically grouping similar
components

Concrete concepts
Concepts representing specific components that can actually
be assembled for realizing a product
Leaf concepts with fully specified property values

Configurable products may specify abstract concepts
as their parts

Instances of abstract concepts are specialized to be
instances of a concrete concept

Thorsten Krebs: Debugging Structure-based Configuration Models 1322.07.2008, Patras, Greece

Contents

Introduction
Knowledge Representation
Which Components are relevant for a Configurable
Product?

Algorithm
Complexity

Which Components are not relevant for any Configurable
Product?
Which Components are “Reachable”?
Conclusion

Thorsten Krebs: Debugging Structure-based Configuration Models 1422.07.2008, Patras, Greece

Which Components are relevant
for a Configurable Product?

Algorithm
Creating a product-specific
segment

Thorsten Krebs: Debugging Structure-based Configuration Models 1522.07.2008, Patras, Greece

Which Components are relevant
for a Configurable Product?

Algorithm
Creating a product-specific
segment

1. Downwards Traversal of the
Partonomy

Legend:Legend:

Target product

Composition relation

Upwards traversal of taxonomy

Downwards traversal of taxonomy

Concept included in segment

Concept not included

Taxonomic structure

Constraint

Including all part concepts with a
max. cardinality greater than 0

Thorsten Krebs: Debugging Structure-based Configuration Models 1622.07.2008, Patras, Greece

Which Components are relevant
for a Configurable Product?

Algorithm
Creating a product-specific
segment

1. Downwards Traversal of the
Partonomy

2. Comparing Attribute Values

Legend:Legend:

Target product

Composition relation

Upwards traversal of taxonomy

Downwards traversal of taxonomy

Concept included in segment

Concept not included

Taxonomic structure

Constraint

Filter 1: omit concepts without a
common value subset

Filter 2: use only common
value subset

Thorsten Krebs: Debugging Structure-based Configuration Models 1722.07.2008, Patras, Greece

Which Components are relevant
for a Configurable Product?

Algorithm
Creating a product-specific
segment

1. Downwards Traversal of the
Partonomy

2. Comparing Attribute Values
3. Upwards Traversal

of the Taxonomy
4. Downwards Traversal

of the Taxonomy
5. Sibling Concepts
6. Constraints

Legend:Legend:

Target product

Composition relation

Upwards traversal of taxonomy

Downwards traversal of taxonomy

Concept included in segment

Concept not included

Taxonomic structure

Constraint

Thorsten Krebs: Debugging Structure-based Configuration Models 1822.07.2008, Patras, Greece

Which Components are relevant
for a Configurable Product?

Complexity
n concepts in total
k < n components
l < k product parts
i < k max. number of taxonomic levels
j < k max. number of children in a taxonomic level
i x j < n
m number of constraints
a max. arity of constraints
The worst case complexity is O(n²+(a-1)m)

Thorsten Krebs: Debugging Structure-based Configuration Models 1922.07.2008, Patras, Greece

Contents

Introduction
Knowledge Representation
Which Components are relevant for a Configurable
Product?
Which Components are not relevant for any
Configurable Product?

Algorithm
Complexity

Which Components are “Reachable”?
Conclusion

Thorsten Krebs: Debugging Structure-based Configuration Models 2022.07.2008, Patras, Greece

Which Components are not
relevant for any Conf. Product?

Algorithm
Executing the segmentation
for all configurable products

Complexity
p configurable products

p time the previous
complexity

The worst case
complexity is
O(p(n²+(a-1)m))

Legend:Legend:

Target product

Composition relation

Upwards traversal of taxonomy

Downwards traversal of taxonomy

Concept included in segment

Concept not included

Taxonomic structure

Thorsten Krebs: Debugging Structure-based Configuration Models 2122.07.2008, Patras, Greece

Contents

Introduction
Knowledge Representation
Which Components are relevant for a Configurable
Product?
Which Components are not relevant for any Configurable
Product?
Which Components are “Reachable”?

Algorithm
Complexity

Conclusion

Thorsten Krebs: Debugging Structure-based Configuration Models 2222.07.2008, Patras, Greece

Which Components are
“Reachable”?

Reachability
A reachable concept can in fact be instantiated
during product configuration
This includes two aspects:
1. Taxonomy-based reachability
2. Constraint-based reachability

Thorsten Krebs: Debugging Structure-based Configuration Models 2322.07.2008, Patras, Greece

Which Components are
“Reachable”?

Algorithm
Taxonomy-based Reachability

Downwards Traversal
from part concepts

Complexity
l < k product parts
i < k max. levels
j < k max. children
i x j < k
The worst case
complexity is O(k²)

Legend:Legend:

Target product

Composition relation

Upwards traversal of taxonomy

Downwards traversal of taxonomy

Reachable concept

Not reachable concept

Taxonomic structure

Leaf concept

Thorsten Krebs: Debugging Structure-based Configuration Models 2422.07.2008, Patras, Greece

Which Components are
“Reachable”?

Algorithm
Constraint-based Reachability

Constraint Satisfaction is known to be NP-hard
Approximations are not sufficient
Try to get as far as possible from the worst case:

1. Node Consistency
Solving unary constraints first
Plays the role of a pre-processor for subsequently solving the
constraint net
Eliminates local inconsistency that would otherwise be
stumbled upon later

Thorsten Krebs: Debugging Structure-based Configuration Models 2522.07.2008, Patras, Greece

Which Components are
“Reachable”?

Algorithm
Constraint-based Reachability
2. Reducing the Search Space

Specialization constraints and composition constraints rule out
instances

Fewer instances of leaf concepts need to be addressed
When value ranges are specified:

Not all specified property values are covered by leaf
concepts
Merging property values of leaf concepts to a common
value
Need not consider infinite value domains
When a value is modified, leaf concepts can be pruned!

Thorsten Krebs: Debugging Structure-based Configuration Models 2622.07.2008, Patras, Greece

Which Components are
“Reachable”?

Example

Legend:Legend:

Taxonomic structure

Leaf concept

Attribute constraint

Concept belonging to antecedent

Concept included in segment

Concept not included

Partonomic structure

14 15 1514 18

[14:15] {14;15;18}

Thorsten Krebs: Debugging Structure-based Configuration Models 2722.07.2008, Patras, Greece

Which Components are
“Reachable”?

Example

Legend:Legend:

Taxonomic structure

Leaf concept

Attribute constraint

Concept belonging to antecedent

Concept included in segment

Concept not included

Partonomic structure

14 15 1514 18

[14:18][14:15]

Thorsten Krebs: Debugging Structure-based Configuration Models 2822.07.2008, Patras, Greece

Which Components are
“Reachable”?

Algorithm
Constraint-based Reachability
3. Evaluating Constraints on the Conceptual Level

The constraint net need not be evaluated for every potential
combination of instances – instead:

Evaluate for instances of the constraint concepts,
Traverse downwards in taxonomy, and
Evaluate emerging new constraints

4. Independent Constraint Subnets
The whole constraint net needs to be evaluated once
But after that mutually independent subnets can be discarded

Complexity

Thorsten Krebs: Debugging Structure-based Configuration Models 2922.07.2008, Patras, Greece

Contents

Introduction
Knowledge Representation
Which Components are relevant for a Configurable
Product?
Which Components are not relevant for any Configurable
Product?
Which Components are “Reachable”?
Conclusion

Proof of Concept
Experiments
Summary

Thorsten Krebs: Debugging Structure-based Configuration Models 3022.07.2008, Patras, Greece

Conclusion

Proof of Concept
Prototype implementation
Managing a configuration model
Impacts that changes to components have on
configurable products

Evaluation
Visualization

Experiments regarding
Reasonable computation time
Scalability

Thorsten Krebs: Debugging Structure-based Configuration Models 3122.07.2008, Patras, Greece

Conclusion

Experiments Setup
Goals: validate

Reasonable computation time
Scalability

Input data – 3 test models:

Domain Concepts Attributes Compositions Constraints
CPS (EngCon) 72 107 34 62

Mercedes (LiMEd) 115 134 49 8

Sartorius (EngCon) 805 6794 222 145

Thorsten Krebs: Debugging Structure-based Configuration Models 3222.07.2008, Patras, Greece

Conclusion

Experiment
Results

Measurement Average Min Max
Execute Change 1.966 0.371 6.177

Validate Product 35.850 7.786 159.114

- Validate Conceptually 10.072 6.714 15.921

- Validate Constraints 38.548 2.869 153.053

Configuration Model Average Min Max
CPS 0.235 0.187 0.429

Mercedes 0.242 0.216 0.445

Sartorius 0.191 0.100 0.594

Thorsten Krebs: Debugging Structure-based Configuration Models 3322.07.2008, Patras, Greece

Conclusion

Experiment Results
Reasonable computation time

Executing a change takes between 0.1 and 25 ms
Validating product consistency takes between 8 and 160 ms

Scalability
Execution time does not increase according to size
But only according to complexity of knowledge

Yet to be evaluated
Comparing

Simple G&T constraint satisfaction algorithm
Constraint satisfaction algorithm incl. defined improvements

Thorsten Krebs: Debugging Structure-based Configuration Models 3422.07.2008, Patras, Greece

Conclusion

Summary
Knowledge management framework that supports the
evolution of configurable products
Consistency-preserving evolution process
Product-centered approach

Semantic differentiation between component representation
and product representation
Impacts that changes to components have on products

Experiments with prototype show feasibility

	Debugging Structure-based Configuration Models
	Contents
	Contents
	Introduction
	Introduction
	Knowledge Representation
	Introduction
	Introduction
	Contents
	Knowledge Representation
	Knowledge Representation
	Knowledge Representation
	Contents
	Which Components are relevant for a Configurable Product?
	Which Components are relevant for a Configurable Product?
	Which Components are relevant for a Configurable Product?
	Which Components are relevant for a Configurable Product?
	Which Components are relevant for a Configurable Product?
	Contents
	Which Components are not relevant for any Conf. Product?
	Contents
	Which Components are “Reachable”?
	Which Components are “Reachable”?
	Which Components are “Reachable”?
	Which Components are “Reachable”?
	Which Components are “Reachable”?
	Which Components are “Reachable”?
	Which Components are “Reachable”?
	Contents
	Conclusion
	Conclusion
	Conclusion
	Conclusion
	Conclusion

