
1

Config WS 07/08

Reconfiguration from

First Principles

Markus Stumptner

Advanced Computing Research Centre

University of South Australia
mst@cs.unisa.edu.au

Config WS 07/08

Reconfiguration from

First Principles

Markus Stumptner

Advanced Computing Research Centre

University of South Australia
mst@cs.unisa.edu.au

with a fair bit of pragmatism in the mix

3

Config WS 07/08

…work with Wolfgang Mayer, Arndt Muehlenfeld, Franz

Maier, Rajesh Thiagarajan, Michael Schrefl

4

Config WS 07/08

Overview

� Reconfiguration – a problem in search
of a solution?

� What’s been done

� The Configuration View

� The Diagnosis View

� Why our interest: 2 applications

� Other approaches

� Summary

5

Config WS 07/08

The Manhart view of

Reconfiguration

� Technical configuration, not sales
configuration

� Not all implications of technical changes
recorded

� Scaleability of approaches

� Need to adapt processes

� “Nobody has really looked at the
problem”

6

Config WS 07/08

The Configuration View

� Conceptual Reconfiguratoin Framework

[Männistö et al.]

� ConBaCon [John, Geske]

� Heuristic approaches [Schenner et al.]

� Knowledge aging [Kreuz, Roller]

� VT

� Plakon

2

7

Config WS 07/08

Conceptual Reconfiguration

Model
[Männistö/Soininen/Tiihonen,Sulonen CWS 99]

[Männistö 02]

� Standard configuration definition

� Change requirements

� Explicit reconfiguration operators with value
function for individual cases

� A reconfiguration is a sequence of changes
that is optimal according to the value function

� Demonstrated on case study
� Case company had predefined reconfiguration
operations 8

Config WS 07/08

Reconfiguration in ConBaCon

[John, Geske CSW 00]

[John 02]

� Object-oriented constraint model with explicit

aggregation (subobject) relationships

� When reconfiguring, the existing configuration is put

in place as weak constraint, whole problem solved as

a partial CSP

� No dynamicity, i.e., set of replacement objects must

be explicitly listed, deletion of objects (and subobjects

occurs as necessary)

9

Config WS 07/08

Knowledge Aging/Heuristic Repair

� Knowledge Aging [Kreuz,Roller CWS 99]
� Applies decreasing utility to older KB elements

� Alternates single component
removal/configuration step

� Heuristic Repair [Schenner, Falkner CWS 02]
[Schenner, Fleischanderl CWS 03]
� Greedy repair algorithm

� Selected catalog of heuristic repair steps (e.g., for solving
cardinality violations in relations) operating directly on object
structure

� Limitations on object creation in repair actions (e.g., by
limitations on object types)

10

Config WS 07/08

VT

� Elevator design

� “immortalized” in the KE community by the Sisyphus
project
� “Configuration ≅ Propose + revise”

� “Configuration is a knowledge intensive task”

� Individual “fixes” in case of constraint violations
prepared by experts
� ~40 in the case

� Potential of “thrashing”

� Not really reconfiguration (since fixing happens within
a single search), but very influential in terms of
method

11

Config WS 07/08

The Diagnosis View 1

� Reconfiguration as type of repair method

[Crow/Rushby AAAI 91]

� Triggered in case of explicit misbehavior

� Specification of fault modes or other behaviour

modes

� No structural modification

12

Config WS 07/08

The Diagnosis View 2

� Consistency-based diagnosis
[Stumptner/Wotawa AiD 98]
� Example domain: phone switching
systems
� resetting functionality and dealing
with configuration errors

� Standard hitting set algorithm

� valid reparameterisations

� structurally minimal component conflicts
(removals)

� no full reconfiguration

3

13

Config WS 07/08

A CSP based reconfiguration

model

� Based on COCOS OO scheme

� Similar to ConBaCon + dynamics

� Object oriented configuration model

� Costs for constraint changes/additions

associated with a solution

� In terms of assignments/unassignments

14

Config WS 07/08

Algorithmic considerations

� Three major families

� CSOP (COP)

� Explicit reconfiguration planning

15

Config WS 07/08

Application 1 –

Sales Quotation
� Company in automotive sector

� Negotiation process with customers

� Currently spreadsheet-based

� “standard” configuration aspects

� Reconfiguration in the negotiation process

� “change of target with time limit

� Implicit initial assumptions may be lost

� Case-based approach (?)

16

Config WS 07/08

How does the Sales Quotation

project fit the scheme?

� Dependency management

� Keeping track of all the relevant factors

� SW/HW interface??

17

Config WS 07/08

Application 2 – Service

Composition

� Main goal: establishing dynamic
interaction between applications

� Based on existing work on service
composition

� [Kleiner, Henocque CWS 07] port-based
matching (IO), no preconditions or effects
(PE)

� [Thiagarajan, Stumptner ECOWS 07]
explicit reasoning on PE’s in OCL, 2 level
compositoin process

18

Config WS 07/08

Basic assumptions
� Services don’t exist in a vacuum

� Composition in the context of an appl. process on
both sides

� User prespecifies control flow between tasks that
will be tied to abstract services

� Specification of functional and other requirements
for service usage

� Global requirements (e.g., maximum cost)

� The environment is unreliable
� Explicit inclusion of control tasks

� To query environment and reconfigure task
execution if necessary

� Not dealing with structural heterogeneity

4

19

Config WS 07/08

The Idea

20

Config WS 07/08

Airline booking service

processes

� DeepBlue

� PurpleRed

21

Config WS 07/08

Detailed Task Workflow -

Business Trip

22

Config WS 07/08

Comparison

� Parts of the model

� Process model

� Business objects

� State and execution schedule

� A way to conduct composition

� How does it fit the scheme?

� OO process metamodel

� Constraint-based rematching given a
different pool of component services

23

Config WS 07/08

Other approaches

� Consistency restoration after user
interaction [Amilhastre, Fargier AIJ 02]

� Compilation of possible choice paths

� Find a set of actions to restore consistency

� Static model assumed (Renault example)

� Case-based Reasoning e.g., [Watson,
Gardingen 99]

� Case retrieval (relaxation and matching)

� Case adaptation

24

Config WS 07/08

Case adaptation in CBR

� Lots of methods

� Substitution

� Reinstantiation, Parameter adjustment, local

search, case-based substitution

� Transformation

� Commonsense transformations

� Model-guided repair based on causal relations

and functional reasoning [Goel, Stroulia 96]

� Detailed repair plans based on specific functional

differences

5

25

Config WS 07/08

Summary

� Overview over reconfiguration

approaches

� Action-based vs consistency based

approaches

� Some current sample problems

26

Config WS 07/08

Overview

� Web Services

� Composition Support Schemes

� Semantic Matching Schemes

� Matching as Configuration

� Useful extensions

27

Config WS 07/08

Web Services for BPI

� Starting point: BPI (Conceptual Modeling)
� taking complementary (potentially interacting) processes
and matching individual operations (not necessarily 1:1)

� Original intent: Design time/interactive

� What we are looking at:

� appropriate semantics for the language

� Not so much runtime

� Base models: Petri nets, statecharts, contracts

� Use the WS standards hierarchy? HTTP, SOAP,
WSDL (")
� Encapsulating parts of business logic

� Hide heterogeneity

� Standardized & flexible communication

28

Config WS 07/08

Levels of Composition

� Manual/hardwired choreography

� Composition

� Dedicated languages for the latter
� UML EDOC

� XPDL

� WS languages (e.g., BPEL4WS)

� ebXML

� Matching

� Automated Composition

29

Config WS 07/08

Configuration Overview

� Composition of systems from sets of components

[Wielinga, Schreiber] IEEE IS 98 Special issue

Other special issues: AI EDAM 98, AI EDAM 03

� Types of constraints: local, incremental, global (func.)

Full config

design

Layout,

scheduling

free

Assignmentskeleton (to

flesh out)

Parametric

design

Verificationfixed

Set of types

(catalog)

Parameter-

ised

fixedComponents/

Assembly

30

Config WS 07/08

Configuration Overview

� Composition of systems from sets of components

… Planning …

Full config

design

Layout,

scheduling

free

Assignmentskeleton (to

flesh out)

Parametric

design

Verificationfixed

Set of types

(catalog)

Parameter-

ised

fixedComponents/

Assembly

6

31

Config WS 07/08

Configuration methods

� KE community: “knowledge-rich methods”

� e.g., SISYPHUS project (VT elevator example, 89)

� Typically “propose-revise” or some mod

� Requires detailed specifications of “fix” strategy

� General configuration community

� General methods focused on efficient description

� CSP, FOL based, generic problem solvers

� Standard ontologies [Soininen et al. , Felfernig et al. 03]:

Components, ports (for connections), resource specifications

(aggregate functions)

� Complex constraints over large scale assemblies (multiple

instantiation)

32

Config WS 07/08

Support for composability

checking
� Methods generally from DB or conceptual modelling
community

� Syntactical correspondence of properties
[Yang/Papazoglou CAiSE 02]

� Matching aggregation hierarchy [Fileto et al. VLDBJ 02]

� “Ontology-based matching”: Extensive list of properties
(e.g., purpose, quality for bindings, parameters,
function) that are matched textually (with synonyms)
[Medjahed et al. VLDBJ 03]

� All have special purpose algorithms and fixed set of
properties

33

Config WS 07/08

OWL-S based support

� Mainly service matching

� Only control patterns within a single service

� Use standard DL subsumption reasoner

[Paolucci et al. 02] [Li, Horrocks WWW 03]

� Exact: exact match or request is-a offer

� PlugIn: request ¥ offer

� Subsumes: offer § request

� Failure: absence of subsumption

Preference

Ordering

34

Config WS 07/08

Li/Horrocks Example
� items are provided by an Actor with name “Georgia”;

items are PCs and the memory size is at least 128 Mb;
the quantity of PCs being bought will be less than 200;
the unit price is more than 700;
the seller must have a creditLevel greater than 5;
goods must be delivered before the 15/09/2002;
goods must be delivered in Bristol.

� Advert1 = ServiceProfile ¢ (Sales ¢
œprovidedBy:(Actor ¢ œ hasName:Georgia) ¢

œ requestedBy:(Actor $5 hasCreditLevel) ¢

œ item:(PC ¢ $128 memorySize) ¢

$700 hasUnitPrice ¢

#200 hasQuantity ¢
œ delivery:(Delivery ¢

20020915 date ¢ œlocation.Bristol))

� Query = ServiceProfile ¢ (Sales ¢

œ providedBy:(Actor $5 hasCreditLevel) ¢
œ item:(PC ¢ œ hasProcessor:Pentium4

#700 hasUnitPrice))

35

Config WS 07/08

A different interpretation

� Consider functionality as key components (function is

type of component)

� A request is a constraint (user requirement) on a

service

� Matches expressed through consistency � service

matching defined as a configuration problem

� Given: Solution CONF, service profile S, request R

� S 0 CLANG, R 0 CLANG [Felfernig et al.03]

� DD c SRS c CONF satisfiable

� Then a = @A 0 CONF is a matching service if

{R’ subclass R, r = @R} and r.sv=a 0 CONF}

36

Config WS 07/08

Example

� Service [Li, Horrocks 03]

class Seller subclass Actor . . .
seller1 = @Seller
name = “Georgia”;
end;

class Sale1 subclass @CompSale
seller = seller1;
item = “PC”;
memory =128;
processor = Set{Pentium3, Pentium4, Athlon...}
deliveryLocation = “Bristol”;

inv quantity <= 200 end;

inv unitPrice >= 700 end;
inv seller.creditLevel > 5 end;

inv deliveryDate < 15/09/2000 end;

7

37

Config WS 07/08

Example (Cont.)

� Request
� class CompOrderDescription subclass ServiceRequest end;
saleOrder = @SaleOrderDescription
sv = @CompSaleAd;
sv.item = “PC”;
sv.processor = “Pentium4;
inv (sv.seller = @Actor) and (sv.seller.creditLevel > 5)
inv sv.unitPrice end;

end;

� no requirements beyond normal (multi-component)
configuration reasoner

� Subsumption only through type hierarchy (key
components)

� Constraint/logic/resource based

38

Config WS 07/08

Other approaches

� [Constantinescu, Faltings, Binder WIS 04]

� All ports specified through types (intervals)

� Complete/partial: consistency-based match via
resource constraints

� No other constraints (all semantics compiled into
port names), e.g., basePrice �priceMinusRebate �

priceWithTax1 � priceWithTax2

� No side properties (e.g., qos)

� [van Harmelen, ten Teije, Wielinga ECAI 04]

� Classical propose-revise approach

� Main argument: no planning possible because
pre/post specs won’t be available

39

Config WS 07/08

That’s just a start

� Optimization

� Open CSP [Faltings et al.03]

� Exact boundary to planning problems

� [Ponnekanti/Fox 02] [Hendler, Nau et al.03]

[Sheshagiri, desJardins, Finin 03]

� Precondition/effect specifications

� Prespecified control flow

� Would be “Skeleton” style configuration except for control

structures

� Requirements Matching: “semantic” UDDI e.g.,
[Mandell, McIlraith 03]

40

Config WS 07/08

What’s the goal?

� Languages useful enough for commercial

applications

� Effective GP reasoning mechanisms for them

� Re-evaluation of overlaps between areas

related of old (planning and configuration)

� Conceptual Modeling community (integration

based on semantic behaviour specifications)

41

Config WS 07/08

Summary

� WS Matching as a configuration
problem

� Existing formalisms easily adapted (not
very surprising, see SW config
modeling)

� Re-use of standard algorithms

� A lot of past work can be adapted

� Utility depends on criteria

