Product Configuration View to Software Product Families

Tomi Mannistd®, Timo Soininen, Reijo Sulonen
Helsinki University of Technology
Software Business and Engineering Institute (SoberIT)
P.O. Box 9600
FIN-02015 HUT, Finland
+358 9 4511
Tomi.Mannisto@hut.fi, Timo.Soininen@hut.fi, Reijo.Sulonen@hut.fi

ABSTRACT

Development and management of software product families
is an emerging and important area of software engineering,
whereas product configuration of traditional, i.e.,
mechanical and electronic, product families has a slightly
longer history as a specific area of research and business.
This paper describes work in progress on the management
of configurable software product families. Solutions to
modelling and managing such software products are sought
from experiences with traditional products.

Keywords
software product family, configuration, evolution

1 INTRODUCTION

Product configuration and product data management have
been successfully applied to traditional, i.e., mechanical
and electronic, product families both in research and
practice. In software engineering, product families have
also become an important area of research as the number of
variants of a software product has increased because of
various requirements from different markets, hardware
platforms, customer specific individualisation, and so on.

The goal of the research outlined in this paper is to manage
software product families on the basis of a compact model
that describes the variants of the family. In this, we will
utilise the lessons learned from modelling traditional
configurable products.

Software product families with a large number of variants
resemble traditional configurable products in many
respects. Therefore, we believe that it is worth applying the
results from the area of traditional products to that of
software product families. Although the transfer of results

from software research to the field of traditional products is
also of importance, we do not address it here.

For both traditional configurable products and software
product families, it is important to be able to design new
variants for a product family in order to meet new emerging
requirements. On the other hand, one must also manage the
large set of variants and be able to select and produce a
correct individual for a particular need from the set of all
variants.

This paper focuses on the latter problem. This viewpoint
means viewing a software product as a configurable
product family that potentially includes a very large
number of variants. Such a software engineering paradigm
becomes relevant, for example, when software is embedded
in a configurable product and the software must adapt to
the hardware configuration. If the available memory is
limited, the loaded software cannot simply include all
possible variability and dynamically adapt to the hardware.
Examples of such products are tomorrow’s mobile
terminals. Similar strategies are also currently sought for
enterprise resource planning (ERP) systems that often are
large configurable information system packages [11].

We are not primarily interested here in the process for
designing a product family or a new variant for a product
family — we assume them to be separate problems from
the modelling of the software product family. In addition,
we do not discuss here other means of software adaptation
or adaptability, such as support for customisation by end
users, software agents or self-configurable software.
However, we believe that a configuration model and the
concepts discussed in this paper may also be used for
modelling the variability in some of those areas.

In the following, we first describe the field of product
configuration of traditional products. Thereafter, we discuss
modelling software product families with ideas and
solutions imported from traditional products. Finally, we

1Visiting Nokia Research Center, Burlington, MA, USA

give some conclusions on the possibilities of importing
results from one area to the other and outline further work
in this direction.

2 CONFIGURABLE TRADITIONAL PRODUCTS
A configurable product, or a product family, is such that
each product individual is adapted to the requirements of a
particular customer order on the basis of a predefined
configuration model, which describes the set of legal
product variants [18,20]. Because of the combinatorial
explosion, the number of legal variants of a traditional
configurable product is typically large enough, on the order
of thousands or more, so that listing them one by one is
infeasible. A specification of a product individual, i.e., a
configuration, is produced based on the configuration
model and particular customer requirements in a
configuration task. The configuration task is assumed to be
routine, that is, the generation of the product individual
does not involve creative design or design of new
components.

Configurable products make a clear separation between the
process of designing a product family and the process of
generating a product individual according to the product
configuration model. This places configurable products in
between mass-products and one-of-a-kind products by
enabling customer specific adaptation without losing all the
economical benefits of mass-products.

Knowledge based systems for configuration tasks, product
configurators, have recently become an important
application of artificial intelligence techniques for
companies selling products adapted to customer needs [4].
The purpose of a configurator is to allow managing the
configuration models and support the configuration task.
Product configuration tasks and configurators have been
investigated for at least two decades [14]. Several
approaches have defined specific configuration domain
oriented conceptual foundations. These include the three
main conceptualisations of configuration knowledge as
resource balancing [8], product structure [3] and
connections within a product [15,21]. Next, we first give an
overview to a combined conceptualisation of configuration
knowledge synthesising these approaches, which we have
reported in detail in [20,21]. Then we briefly review an
approach to modelling evolution of traditional configurable
products, which we have reported in [12,13]. The latter
work builds on the ideas of supporting design object
versioning in the field of product design [10].

Configuration modelling concepts

We believe that structured modelling is essential in keeping
product configuration models understandable. Accordingly,
the models discussed in this section are based on explicit
description of structural information in an object-oriented
manner [13,21]. We present the concepts for configuration
modelling by means of slightly extended UML (Unified
Modeling Language). The details of the representation are

not primarily important here, as we are more interested in
the appropriate product family modelling concepts.

The modelling is based on component types that form an is-
a hierarchy (for simplicity, only with single inheritance).
Component types may have property definitions, such as
part, port and resource use and production definitions.
Next, these main concepts and their intuitive semantics are
very briefly introduced with some examples shown in
Figure 1, which shows an imaginary PC product family.

idel
pC =ide2
hd

[0,20] - sw

Office PC
hsm

|
" Imicrophong

Legend: [

port
component type pname
P has-part with part name p
& — Mo resource type
[n.m] and cardinality from nto m P

/\ is-a — amt > resource consumption / production

. some

Figure 1. lllustration of configuration concepts by a simplified PC.

Structural composition is modelled by means of part
definitions. A part definition is augmented with part name
and cardinality, e.g., a PC may have one or two IDE Disks
as parts named ‘hd’. Zero minimal cardinality represents an
optional part. In addition, alternative parts may be defined.
This is not show in the figure, but, for example, if there
were more hard disk types, only some of them might be
defined as alternatives for a home PC.

Connections between components can be modelled by
defining ports (representing interfaces) for component
types, with the idea that in a product individual each port
may be connected to a port of another component
individual. In the figure, there are sample ports for
connecting IDE controllers of a PC and IDE disks (for
simplicity, port types are not shown in the figure).

A configuration model may define resources, and
component types may define that their individuals produce
or use resources. For example, in the figure hard disks
produce disk space, whereas software uses it. In a legal
configuration, the production and use of resources should
be satisfied, e.g., there should be enough disk space to
accommodate all software. In addition, a context may be
defined in which a resource must be satisfied, e.g., the use
of a resource may need to be satisfied by production within
the same subsystem.

In the is-a hierarchy, the properties of component types are

inherited. When “PC defines that it has part Disk”, this
means that also its subtypes ‘Office PC’ and ‘Home PC’
have ‘Disk’ as part.

The is-a hierarchy also induces variability. That is, when a
component type is defined to be a part, this means that any
of its subtypes can be a part. E.g., either of the subtypes of
‘Disk’ is a valid choice as (type of) a part of a PC.

Configuration modelling languages also typically have a
mechanism for expressing conditions or constraints on
combining component types, such as incompatibility and
requires. That is, if two component types are incompatible,
individuals of both types cannot occur in a legal
configuration. When a component type requires another
component type, a configuration that contains an individual
of the requiring type is legal only if it also contains
individual of the required type.

In addition to what is shown in the figure, the configuration
model typically also includes some means for expressing
the functions (or features), as seen by the customers. These
allow the customer to express his or her interest in more
convenient terms than, for example, by selecting particular
component types.

Evolution and component internal variation

The long-term management of configuration knowledge
has always been a major problem for product configurators.
We next briefly describe the concepts for an approach to
modelling evolution of product families. A version is a
concept for capturing the state of a generic object at a
particular time and the evolution of a generic object is
captured by a set of versions [10]. In order to be versions of
the same generic object, the versions share something in
common, such as an interface or substitutability in use, e.g.,
so that newer versions can be used in place of older
versions. In a configuration model, component types are
examples of generic objects.

Generic object C

/ |] '

Revision 1 ‘ ‘ Version 1 ‘ ‘ Version 2 ‘
v : |
‘ Version 3 ‘ ‘ Version 5 ‘ ‘ Version 4 ‘ ’
< 4

Figure 2. Generic object with versions, variants and revisions.

When variability is also considered, the concept version is
divided into concepts variant and revision, i.e., parallel and

consecutive versions of the generic object, respectively.
Variants represent coexisting versions, whereas revisions
capture the evolution in time.

Concepts ‘variant’ and ‘revision’ organise the set of
versions, as illustrated in Figure 2. For example, Variant 1
has its own revision history, and the explicit representation
of revisions bears the notion that Version 3 and Version 5
are in some sense the corresponding revisions of Variant 1
and Variant 2, respectively. They may, for example, have
the same major error fixed or implement the same main
functionality.

In addition, there is an ordering between revisions. For
example, Revision 2 succeeds Revision 1, which means
that in Variant 2, Version 5 succeeds Version 2. This
ordering of revisions is linear since variants are represented
separately.

The generic object also serves as a point of reference to the
set of versions. Such generic references do not specify the
version; it is left open to be bound at an appropriate time.
The version binding mechanism enables selecting both the
appropriate variant and the revision of a generic
component. For example, the selection could be based on a
label, such as “1.1.2°, a time point or defaults, e.g., the
“current revision of default variant”.

Variants of a generic object implement what we call
internal variation, i.e., variation according to which variant
of a selected component type is in the configuration.
Another form of internal variation is parameters of a
component type, such as the length of an axis or colour, for
which the configuration task must determine appropriate
values. This is in contrast to structural variation, which
captures which component individuals may be selected in a
configuration, as discussed in Section 2 in relation to
Figure 1.

With traditional products, the revisions typically represent
the internal evolution of a generic object, whereas
modifications that are visible externally, e.g., changes to
the interface, necessitate creation of a new generic object
instead of a new revision.

One major issue in supporting evolution with generic
objects is how a change, i.e., creation of a new revision, in
one component type should affect the other component
types. Should its subclasses be affected and what about the
wholes in which the component type occurs as a part? That
is, how revisions of different entity types may and may not
be related. These issues are discussed in more detail in [12]
and omitted here for brevity.

Lessons Learned

A lesson learned from traditional configurable products is
the essential role of long term management in the success
or failure of methods and systems supporting product
configuration. One of the earliest examples, the XCON

configurator, was reported to provide work for tens of
developers and maintainers of configuration knowledge
after a few years of operation [1]. Therefore, we feel that it
is also important to address the issue of evolution in
modelling of product families.

In order to succeed, one should first be able to describe the
variants of a product family in a clear and intuitive manner.
With traditional configurable products ad hoc means in
modelling the product variety lead to complex models that
were difficult to maintain. In addition, mapping the product
family to some description language easily destroyed the
inherent design structure of the product family.
Consequently, such representational mismatch made it
difficult to propagate product changes to the product family
representation. Furthermore, the description language was
typically such that the product experts did not understand it,
which required the use of modelling specialists who did not
understand the product.

The concepts for modelling product variety of traditional
products are generic in the sense that they do not reflect
any particular domain area, such as elevators,
telecommunication switches, personal computers, etc. In
addition, it has been adequate to model the variation of
product families at a rather high level of abstraction
without kinematics or stress analyses, for instance.
Furthermore, the configuration modelling has concentrated
on representing the existing variety of product families.
Component descriptions are not so generic that one could
use the configuration knowledge for discovering new
configurations or unforeseen uses of components.

Finding the correct concepts for representing the product
families is only the first step in making the management of
product families succeed. In addition, the evolution of
components and other entities used in the representation
should be managed. To achieve this, it is not adequate to
only label the versions in separation; one should also
capture how the different versions of different entities
relate to each other.

3 CONCEPTS FOR CONFIGURABLE
SOFTWARE

There are many ways of achieving variety in software.
Software variety can be implemented by a ‘universal’
software product that is a union of the all variants, and may
thus behave as any specific variant. An alternative
approach is to use preprocessor directives to optionally
include pieces of source code. This approach however,
easily loses the big picture over the entire product family,
as the representation of variation is distributed in the source
code. With large software products, a typical adaptation
approach is to take an existing variant as a basis and then
modify it accordingly [9]. Such “copy, paste and modify”
of architectural components easily blurs the original ideas
behind the architecture and in consequence deteriorates the
overall product architecture [5].

Variability may also be achieved by selecting appropriate
components to a family architecture [9,23,24]. In the case
of software product families, the architecture can thus be
called a product family software architecture (PFSA). In
fact, there are many different phases in the life cycle of a
product individual (to distinguish from the life cycle of
product family), e.g., construction of configuration, build
and execution, for which different concepts are needed for
modelling the product family [16].

We will next discuss the suitability of configuration
modelling concepts from the previous section for modelling
software product families. We will compare the previous
work on software both to the configuration modelling
concepts and to our approach.

Functions or Features

Customers view a product differently than the engineers
designing it; customers prefer speaking of features that are
of value to them, not necessarily about technical details of
implementing the features. This means that a configuration
model should also capture these features so that customers
can utilise them while inputting system requirements.

As there are approaches for modelling software product
families on the basis of features [7], it seems that from a
modelling perspective, features of software seem to
correspond to functions of traditional products.

Our approach differs from most software product line
approaches as we put more emphasis on routine creation of
individuals for particular customer requirements and
separate that process from the evolution processes. As a
difference to feature based-approaches, we build the
modelling of variety on more structural concepts and
consider the customer requirements expressed by features
as entities that are mapped on the configuration modelling
concepts, e.g., to selections of component types or
additional conditions for the legal configurations.

Compositional structure and taxonomy

Compositional structure and taxonomy are very powerful
and suitable means for representing configurable products.
The decomposition of a system into subsystems is also
important for the management of software product families
and their configuration knowledge.

For example, work at Philips [24] defines a skeletal
architecture that has plug-in components and optional
implementations of components (called units in the paper).
This provides similar, although simpler, variation for a
software product family as optional and alternative parts in
a configuration model. Van der Hoek et al. [22] propose a
model that has great similarities with some of the concepts
discussed above. The optionality proposed in their
approach takes the form of structural variety according to
the terminology above. The variability of components, on
the other hand, is explicitly represented by special variant
components, which consist of a set of components with

same interface. For a configuration, one variant is selected
from the set of variants of the component according to
some control variables. This corresponds to the internal
variation of a component, as discussed above.

Our approach uses the organisation of component types in a
class hierarchy with structural decomposition, component
subtyping and inheritance as a primary basis for modelling
product variety. This differs from typical approaches in
software product lines that build on connection topology.

Connections and Resources

There are many possibilities in conceptualising
connections. The basic idea is to get components
connected, which requires a point of connection in
components. These are called ports in configuration
modelling, similarly as in software architecture domain
[see, e.g., 19]. Another issue is whether separate entities are
used to represent connections between the components as
in architecture description languages or if components and
their connections similar to configuration modelling
suffice. When separate connectors are used, they also need
points of connection, called roles.

One approach for expressing the configuration knowledge
on the basis of interfaces and their correct connection is
that of Koala [23]. The approach makes a distinction
between internal variety of a component (they call it
internal diversity of a component) and structural variety.
For internal variation Koala offers diversity interfaces,
which essentially describe the parameters by which the
variant of the component (type) can be determined. For
structural variety it offers switches that model alternative
connections between interfaces.

It seems that the concepts proposed for modelling software
architecture and interfaces of software classes or
components are rather similar to the concepts proposed for
traditional products and it should be easy to utilise results
from the latter are to model and manage software product
families.

Furthermore, in certain cases, such as method calls to
components, it may be adequate to represent the interfaces
as resources and only check that all needs are satisfied
without making the explicit connections. Module
Interconnection Languages (MIL) use resources similar to
those described above for matching modules by interfaces
of services they provide and need [see, e.g., 19]. In
configuration modelling, the satisfaction of resources,
however, is typically more complex than simple matching.
There may be multiple providers and users of the same
resource and thus the amounts produced and used must be
calculated, possibly within a context.

Our approach does not initially include separate concepts
for modelling connections. Connections can be modelled,
at least to some extent, as component types because of their
conceptual similarities. However, we are not sure whether

that would be an appropriate simplification for software. In
fact, modelling of connections is one potential area in
which results could be transferred from software
architectures to configuration modelling of traditional
products. Furthermore, our approach provides a clean way
of combining resources and compositional structure, which
seems a new and interesting way of representing software
product families.

Constraints
Additional constraints describe the conditions on legal
configurations that cannot be expressed by other concepts.

For software, additional constraint could specify dynamic
behaviour. However, constructing detailed behavioural
models is a remarkable effort and may require formalisms
that make them computationally infeasible. In
configuration modelling of traditional products, the
computational complexity has been studied and a working
balance between expressive power can be established—
e.g., it is not necessary to model the behaviour of the
products for configuration and product data management
purposes [20].

Our approach is to focus on modelling variety, and thus
leave out constructs for modelling detailed behaviour of the
software. We intend not to use constraints for directly
modelling the variety but as additional conditions on the
legal configurations, e.g., for pruning out configurations
including component individuals of incompatible
component types. However, we plan to provide a formal
semantics for the modelling concepts by mapping them to
some logic language for validation and generation of
configurations, but that language would not be the primary
means for representing the configuration model by and to
humans. This scheme has been carried out for the concepts
described in Section 2 [20].

Evolution

The evolution in Koala is defined to protect the stability of
interfaces, which corresponds well with the semantics the
generic objects are meant to capture [23]. That is, the new
versions may be created for the component as long as the
common part described in the generic object, e.g., the
interface, remains.

In the approach by van der Hoek et al. [22], variability and
revisioning are separated in a manner that is semantically
equivalent to generic object of Figure 2. Our proposal is in
this respect a superset of their approach, and allows, e.g.,
the variability to be represented as structural or internal.

Other research in software configuration management has
also addressed the orthogonal nature of revisions and
variants. An n-dimensional grid is one way of representing
variants of software [2]. Estublier and Casallas [6]
identified the dimensions: historical (i.e., revisions), logical
(i.e., variants) and co-operative (i.e., concurrent work
intended to be merged) for the version space. VOODOO

system, on the other hand, models versions by a cube that
has the dimensions: component, revision and variant [17].

We follow a similar orthogonality principle, but propose a
different model for capturing the evolution of software
configuration models based on uniform use of generic
objects. This makes explicit distinction between evolution
and variation of single design objects. In addition, we do
not propose composition as one dimension comparable to
revisions and variants—compositional structure s
modelled by part definitions, which may utilise generic
references with a version binding mechanism. Generic
objects may be used in modelling the compositional
structure of software product families as well as the
evolution with respect to taxonomy. However, modelling
the evolution of product families still requires further
research [12].

4 CONLUSIONS

There are remarkable similarities between the concepts
proposed for software architectures or software product
families and those used for modelling configurable
traditional products. For traditional products, various
methods exist that allow modelling product families by
essentially using some subset of the concepts of Figure 1,
with some approach-specific variations. These concepts for
modelling the variety of traditional products seem to suit
modelling software product families as well. We do, thus,
propose a model-based approach as a means for managing
software product families when the number of variants
increases. Utilising the concepts from traditional product
families and adapting them for representing the architecture
and variation of software product families, we believe,
would lead to more concise and manageable models. In
addition, such models would open a way to using the Al
methods developed in the field of product configuration to
support the generation of product variants on the basis of
the models.

We see the future work in modelling software product
families to include the following issues.

In traditional products, kinematics and stress analyses, for
example, are abstracted away from configuration models.
How about software—What is the appropriate level of
abstraction of dynamic behaviour for software product
families? Does this change if configuration modelling is
extended to capture the dynamic re-configuration of
software in the allocation/execution view?

In addition, the conceptualisation of connections requires
investigating whether the more complex concepts of
components and connectors are needed or if a simpler
conceptualisation based on components and their
connections through ports is adequate.

Another issue is to consider whether the integration of
compositional structure with taxonomy and resources
would provide practically feasible product family

modelling tools for software engineers and architects.

The incorporation of evolution to product family modelling
is also of great importance. However, even though there is
much work in modelling evolution in various areas,
including design data modelling, product data management,
software configuration management, schema evolution of
databases and temporal databases, there is still plenty to be
done before a mature practice for capturing the evolution of
software product families can be defined.

Last but not least, we need to model some real software
product families on the basis of the concepts described in
this paper. Such experiences are essential in developing the
concepts further and in validating their practical feasibility.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support from the
Academy of Finland (grant 51394). We also thank
Alexander Ran for his valuable comments on an earlier
draft of the paper.

REFERENCES

1. Barker, V.E.,, O'Connor, D.E., Expert systems for
configuration at Digital: XCON and beyond, CACM,
32, 3(1989), 298-318.

2. Conradi, R., Westfechtel, B., Towards a Uniform
Version Model for Software Management, SCM97,
LNCS 1235 (1997), Springer, 1-17.

3. Cunis, R., Ginter, A., Syska, I., Peters, H., Bode, H.,
PLAKON — An approach to domain-independent
construction, IEA/AIE-89 (1989), 866-874.

4. Darr, T., McGuinness, D., Klein, M., Special Issue on
Configuration Design. Al EDAM 12, (1998).

5. Dikel, D., Kane, D., Ornburn, S., Loftus, W., Wilson, J.,
Applying software product-line architecture, Computer,
30, 8 (1997), 49-61.

6. Estublier, J., Casallas, R., Three dimensional
versioning, ICSE SCM-4 and SCM-5 LNCS 1005,
Estublier, J., ed. (1995), Springer-Verlag, 118-135.

7. Hein, A., Schlick, M., Vinga-Martins, R., Applying
feature models in industrial settings, Software product
lines—Experience and research directions, Donohoe P.,
ed. (2000), Kluwer Academic Publishers, 47-70.

8. Heinrich, M., Jungst, W., A resource-based paradigm
for the configuring of technical systems from modular
components, IEEE conference on artificial intelligence
applications, (1991), IEEE, 257-264.

9. Karhinen, A., Ran, A,, Tallgren, T., Configuring design
for reuse, ICSE'97, (1997), 701-710.

10. Katz, R.H., Chang, E., Bhateja, R., Version modeling
concepts for computer-aided design databases,
SIGMOD, (1986), 379-386.

11. Kumar, K., van Hillegersberg, J., Enterprise resource
planning—experiences and evolution, CACM, 43, 4
(2000), 22-26.

12. Ménnistd, T., A conceptual modelling approach to
product families and their evolution. Doctoral thesis.
(2000), Helsinki University of Technology.

13. Ménnistd, T., Peltonen, H., Sulonen, R., View to
product configuration knowledge modelling and
evolution, Configuration—papers from the 1996 AAAI
Fall Symposium (AAAI technical report FS-96-03),
Faltings, B., and Freuder, E.C., eds. (1996), 111-118.

14. McDermott, J., R1: a rule-based configurer of computer
systems, Artificial Intelligence, 19, 1 (1982).

15. Mittal, S., Frayman, F., Towards a generic model of
configuration tasks, 1JCAI, (1989), 1395-1401.

16.Ran, A., ARES conceptual framework for software
architecture, Software Architecture for Product
Families, Jazayeri, M., Ran, A, and van den Linden, F.,
eds. (2000), Addison Wesley, 1-29.

17. Reichenberger, C., VOODOO A Tool for orthogonal
version management, ICSE SCM-4 and SCM-5
Workshops: LNCS 1005, Estublier, J., ed. (1995),
Springer, 61-79.

18.Sabin, D., Weigel, R., Product configuration
Frameworks—A survey, IEEE intelligent systems &
their applications, 13, 4 (1998), 42-49.

19.Shaw, M., Garlan, D., Software acrhitecture—
Perspectives on an emerging discipline, Prentice-Hall,
1996.

20. Soininen, T., An approach to knowledge representation
and reasoning for product configuration tasks. Doctoral
thesis. (2000), Helsinki University of Technology.

21. Soininen, T., Tiihonen, J., Méannistd, T., Sulonen, R.,
Towards a General Ontology of Configuration, Al
EDAM, 12, 4 (1998), 357-372.

22.van der Hoek, A., Heimbigner, D., Wolf, AL,
Capturing architectural configurability: variants,
options, and evolution. (University of Colorado, Dept.
of Computer Science, 1999), CU-CS-895-99.

23.van Ommering, R., van den Linden, F., Kramer, J.,
Magee, J., The Koala component model for consumer
electronics software, Computer, March (2000), 78-85.

24. Wijnstra, J.G., Supporting diversity with component
frameworks as architectural elements, ICSEQ0, (2000),
50-59.

